
Recording in ON24

Webinar

Pre-Recorded Events

Jonny Poole

Jonny Poole
21 January, 2016

Qlik Best Practices

Performance and Optimization

Presentation title

would go here to

address topic

Presenter Name
Presenter Title

Presenter Company

Jonny Poole

@Qlik since 2011

Principal Solution Architect

https://community.qlik.com/people/jpe

https://community.qlik.com/people/jpe

4

• Section I Qlik’s Core Technology

– Best Practices for data modeling, expressions, data loading & app maintenance

• Section II Data in Motion

– The art of platform selection and configuration

• Section III Data Segmentation

– More data and how to reset the Qlik scalability

• Section IV Direct Discovery

– An option for some scenarios

• Section V On-Demand App Generation

– An elastic approach to analytics with massive data sets

Agenda

5

• Loads compressed data into memory

• Uses an accelerated compression algorithm

• Enables associative search and analysis

• Supports 100’s millions to billions of rows of data

Section I Qlik In-Memory approach

In-Memory

6

• To understand the secret sauce it’s important to understand how Qlik handles data.

• Qlik’s stores each unique data value once.

• Product Names, Customer Names, Dates , Revenue amounts etc…

• Once the variety of unique values are understood, the need for more RAM drops dramatically

• This results in a very attractive scalability curve. Surprising ? How is that possible ? = secret sauce

Qlik’s Secret Sauce

Data Volume

R
A

M

7

Symbol Tables

• For each unique field in an associative database, Qlik creates a 2 column table call a Symbol table. The symbol

table contains 1 record for each unique value loaded through the ETL process. One column stores the unique

value and the other column stores a ‘symbol’ value. The symbol is a ‘bit stuffed pointer’

reference: Symbol Tables and Bit Stuffed Pointers

– The storage need for a bit stuffed pointer value increases the bigger the pointer value (a high row number bit

stuffer pointer value takes up more room)… so two reasons to reduce variety of values per field

The Storage Model

and Data Tables

• While creating the symbol tables Qlik also recreates the actual

tables, using the symbol values in lieu

• Remember, large bit stuffed pointer values will be repeated in the

Data table… so three reasons to reduce variety of values per field 

https://community.qlik.com/blogs/qlikviewdesignblog/2012/11/20/symbol-tables-and-bit-stuffed-pointers

8

• At greater volume, the majority of unique value tables are saturated.

• As each Symbol table saturates, the demand for more RAM reaches inflection points and requirements taper…

• Saturation of Dimensional Data tables also occurs, and minimal growth is experienced

The Effect on RAM of adding more data

5 years

= 1825

records

10,000

unique

product

names

50,000

unique

Customer

names

10,000,000

unique

transactions

High
RAM

Growth

Tapering
Ram

Growth

Minimal
RAM

Growth

9

• As data volumes grow from from 100M to 200M records, only a fraction more RAM is required (ex: 20.6GB to

21.8GB).

• Source: Qlik Sense Scalability Data Sheet

Source: Qlik Sense Scalability Data Sheet

• 1.5x data = 3.9% RAM footprint increase

• 2x data = 5.8% RAM footprint increase

10

• -> A storage model that results in an accelerating compression model

• -> A scalability curve that levels down with more data

outstanding performance + reliable scalability = a hit product

So what is the Secret Sauce ?

11

Data Model performance

• Synthetic keys removed from data model

• Remove system keys/timestamps from data model

• Unused fields removed from data model

• Remove unneeded snow flaked tables (consolidate)

• Break concatenated dim. fields into distinct fields

• Remove link tables from very large data models, table concatenation is a possible alternative

• Use integers to join tables where possible

• Use Autonumber() to replace large concatenated keys

Data Modeling best practices

12

• Drop unused fields

– Avoid select *

– Unused Fields app: http://qlikviewcookbook.com/recipes/download-info/document-analyzer/

• Fewer fields = Data Tables that are less wide

• Eliminates some symbol tables

Best practices for Data Model Performance

• Aggregate unnecessary detail

– Load dates instead of datetimes -> Date(Floor(Timestamp))

– Changes ‘2015-01-01 12:00:00.000 TT’ to 2015-01-01’

– 5 years = ~157,000,000 unique minutes vs. 1825 unique dates

• Symbol table has far fewer records

• Removes many larger bit stuffed pointer values from both symbol and data table

• Replace ID fields and potentially any field that you need in the data model that won’t be displayed

in the UI with integers by using autonumber() functions.

– The actual data value isn’t loaded, but a short integer is.

– Are you displaying field values or just counting them ?

• Symbol table will have a smaller footprint

http://qlikviewcookbook.com/recipes/download-info/document-analyzer/

13

• Minimize nested Ifs

If(Region=‘North America’, 100,

if(Region=‘Asia’,50,

if(Region=‘Europe’,75)

)

)

Best Practices for Expressions

• Solution #1 - pick(match()) can be a replacement in the UI

=pick(match(Region,'North America','Asia','Europe'),100,50,75)

• Solution #2 - Mapping load may also work in the load script

RegionMap:

Mapping Load * inline [

Region,Number

North America,100

Asia,50

Europe,75];

Regions:

Load

Region,

applymap(‘RegionMap’,Region) as Number;

From <>;

14

Minimize string comparisons

• For example in Set Analysis or IF statements

Worst: Sum(If(ClientGroup=‘North America Sales’, Sales))

Better: Sum(If (ClientGroupNum=1,Sales))

Best: Sum({<ClientGroupNum={1}>} Sales)

Groups: Left Join (Groups)

Load * inline [Load * inline [

ClientGroup ClientGroup, ClientGroupNum

North America Sales North America Sales,1

Europe Sales Europe Sales,2

Asia Sales]; Asia Sales,3];

Best Practices for Expressions

15

Best Practices for Expressions

• Use Boolean Flags

Back End:

Orders: Orders

Load Load

Date; Date,

From <>; if(Year(Date)=Year(Today()),1,0) as YTDFlag;

From <>

Date,YTDFlag

12/31/2015,1

12/31/2014,0

6/30/2015,1

Performs best: Sum(Sales * YTDFlag)

Symbol table of Boolean flag is only 2

records

Common with relative time situations:

YTD, Prior YTD, MTD, QTD, Last 6

months rolling etc…

Boolean Flags can eliminate unnecessary IF

statements and Set Analysis

They are also have a light footprint in the data

model making them an easy choice

Works: Sum({<Date={“>=$(=Yearstart(max(Date)))<=$(=max(Date))”}>} Sales)

Performs better with more Data: Sum({<YTDFlag={1}>} Sales)

16

• Users always want this so they can export all the data and work offline.

• But they are very expensive from a performance standpoint

Manage the request with the following design and strive to understand the business case

• Introduce UI design that allows selections for fields and measures

• Limit selections and records (via show/hide condition) as necessary

• Add Calculation Conditions to limit displayed rows if necessary

Avoid/Manage large straight tables and pivot tables

17

• Avoid AGGR function when possible

• Can be difficult, sometimes you can load an aggregated table in the data model instead

Orders: MonthOrders:

Load Load distinct

OrderDate, OrderMonth,

Month(OrderDate) as OrderMonth, sum(Sales) as MonthlySales;

Sales; resident Orders

From <>; group by OrderMonth;

• Avoid calculated chart dimensions if possible

• Try calculating in the load script if possible

• Avoid/Manage Charts that use fields from 3-4+ different tables

• Includes situations where the fields come from tables that are several ‘hops’ apart in the data model

Best Practices for Expressions

18

How about the data load ? QVDs

Operational Data Sources

SalesOperations

Operational Data Sources Operational Data Sources

QVD

Generator

App

SalesOperations

A QVD (QlikView Data) file is a file

containing a table of data that

QlikView has extracted from one or

more data sources. QVD is a native

QlikView format and can only be

written to and read by QlikView.

They are created with the scripting

that is included in the QVW files.

Benefits:

• Single Source of Truth

• Incremental Loads

• Snapshots Loads

• Delivery Flexibility

• Very Fast Data Load
QVD

Generator

App

SalesOperations

19

Loading Bottlenecks: QVDs

• Qlik loads are a serial process defined by a load script

• It is easy to create a load script that includes many data transformations and

calculations that ends up taking a long time, especially when working with a large

data set.

• QVDs allow us to use critical data loading optimization techniques:

• Optimized QVD Loads

• Incremental Loading

• Parallel Loading

20

Loading Bottlenecks: QVDs

• Optimized QVD Loads

• A QVD load is optimized when minimal transformations occur on the load

• An optimized load will 100,000s of records per second

• Use optimized loads to assemble a very large data.

• Perform transformations in advance of QVD creation

• Incremental Load

• Load Script has 3 steps:

– Load history from QVDs (optimized load if possible)

– Load and concatenate new/delta data set from source data sets

– Rewrite the history to QVD (ready for next load)

• Parallel Loading

• If you have a significant data volumes and/or significant transformations to process on the

incremental load , the load into N loads

Ex: Instead of loading 10 years of data in one load, load one year of data in 10 different

loads and write to QVD

21

Loading Best Practices

• Leverage QVDs

• ‘Dynamic Data Update’ may offer a shortcut to incremental without QVDs

• Push transformations to database engines if possible

• Use different loading techniques to resolve different kinds of bottlenecks

22

• Use Variables

• You can also externalize expressions used in a app , load them in a script using Let/Set

commands as variables,

• Allows the injection of common expressions into different apps to maximize reuse.

• It also saves a developer from having to open the QVW in desktop and republish.

Governance and Manageability

23

Trade offs

Governance and Ease of

Management

Lean UI , Lean

Expressions

Lean Data

Models

Create Variables
Create Variables

Boolean Flags

Mapping Loads

Aggregate Tables

Use QVDs

Minimize IF

Minimize Set Analysis

Minimize Aggr

Minimize Calc Dims

Remove Fields

Eliminate Timestamps

Use Autonumber()

Eliminate Synthetic Keys

Reduce Snowflakes

24

• With a tuned data model and UI best practices, RAM is rarely a bottleneck for

Qlik applications

• Next topic: so what is a bottleneck ??

What have we learned so far?

25

• Qlik’s accelerating compression algorithm allows the QIX engine to store an enormous amount of data in

memory. At the app level, RAM is rarely a bottleneck for Qlik

• Qlik’s engine is sensitive to certain chipset configurations that allow (or restrict) a large amount of in-

memory data to move between RAM and CPUs

• With Qlik, CPU configuration is generally a bottleneck before RAM

• # QPIs are a key component of optimal CPU architecture and making the right hardware choice for qlik

https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect

The Intel QuickPath Interconnect (QPI)[1][2] is a point-to-point processor interconnect developed by Intel which replaced the front-side

bus (FSB) in Xeon, Itanium, and certain desktop platforms starting in 2008.

Section II Data in Motion

https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect
https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect#cite_note-Intel_QPI-1
https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect#cite_note-2
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Electrical_connection
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Front-side_bus
https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Itanium

Chipset Example Whitelisted

E7-48XX DL580 G8 Yes

Chipset Example Whitelisted

E5-46XX DL560 G8 No

Chipset Example Whitelisted

E5-26XX DL380 G8 Yes

Choosing hardware to maximize the number of QPIs

0 1

2 3

CPU

RAM

Memory Bus

QPI

Chipset Example Whitelisted

Maximum 1 hop

When you choose hardware for Qlik

reduce ‘Data in Motion’ bottlenecks by…

• Selecting “white listed” hardware
= Chipsets validated by Qlik Scalability Lab (see next slide)

• Avoid AMD

• With a white listed server, where possible, select the option with faster clock speed
• Ex: E5-2680 or higher, including V2 chipset

• Install Memory according to manufacturer specs

• Avoid installing more memory such that bus speed drops. Memory bus speed is a priority
• Ex: HP DL380 machines can run at 1866Mhz

• Follow Qlik recommended server settings
• Disable NUMA

• Disable Hyperthreading except E5-26XX series

• Power Mgmt = Max

• Turbo Boost = Enabled

• http://community.qlik.com/docs/DOC-2362

http://community.qlik.com/docs/DOC-2362

Chipsets that are well performing (updated June 2015)

VM Best Practices

30

• The aforementioned CPU bottlenecks occur on a per app basis.

• Qlik has the ability to pass context and filters from one app to a related app \

=“Drill through Qlik style”

– This is called ‘Document Chaining’

• QlikView also has the ability to auto-segment applications by a unique field identifier.

– This segregates a large single document application into N documents

– This is called ‘Loop & Reduce’

• Opportunity to reduce and even ‘reset’ symbol tables so that the applications leverage

smaller bit stuffed pointer values to consume the same amount of data

Section III Resetting the whole performance curve

31

Best practices for Data Model Performance
Very large QVWs represent a disproportionate amount of data (highly compressed), which will translate into a lot of data

in motion. Even with optimal hardware, smaller QVWs have faster performance, so split one QVW into many:

• Document Chaining

– Drill from one app to another passing selection

state in the process

– Keeps individual dashboards in smaller pieces

• Loop & Reduce

– Allow Publisher to split large documents into many

smaller components over a key value.

– As a user looks at the dashboard, smaller documents

are loaded in RAM

Global

Dashboard

Americas

Dashboard

Europe

Dashboard
Asia Pacific

Dashboard

A
c
c
e

s
s
 P

o
in

t

Executive

Dashboard

Americas

Dashboard

Europe

Dashboard
Asia Pacific

Dashboard

A
c
c
e

s
s
 P

o
in

t

P
u

b
lis

h
e
r

32

What does document chaining / loop & reduce do ?

• You can push out CPU bottlenecking by a factor of ‘N’

‘N’ is the # of partitioned detailed applications produced by loop and reduce

N is typically < 1000 …

• But: you have to find a natural business line to ‘divide’ the analytics at the detail level

33

What can we do using exclusively in-memory applications?

• Conservatively: Several billion records

• Each application uses data modeling and UI best practices to reduce data in motion

• Use white listed hardware with optimal QPIs , memory bus speeds, and clock speeds

• We leverage in-memory where possible because the performance is amazing and

recognized industry wide

Complex analytics at summary

– Analytics ‘partioned’ at detail

34

• Direct Discovery is the ability to model a Qlik application WITHOUT pre-loading the data in memory

• It can help to make a larger amount of data available to a user. (It also helps with more near real time scenarios)

• Qlik auto-generates SQL that is sent to the database with every Qlik.

• Performance bottlenecking becomes largely controlled by SQL query performance against the backend database. (Not Qlik and

no longer controlled by the Qlik Developer).

• But: direct discovery brings restrictions on expression/function capabilities due to the SQL dependency.

• So Direct Discovery is not a solution for all cases

Section IV Direct Discovery

Qlik Application

In-Memory Data Model

Direct Discovery

Batch Load

(ODBC)

IMPALA

35

In-Memory

Dashboard

(Millions rows)

Drill-to-Detail

Direct Discovery

Application

(Billions)

Historic Trends

Direct

Discovery

Dashboard

In-

Memory

Dashboa

rd
Direct Discovery Application

(Billions)

Time Sensitive

In-Memory

Dashboard

(Millions)

Direct

Discovery

Applicatio

n

(Billions)

Ways to leverage Direct Discovery

1. Build a single Qlik application using direct discovery

– Limited expression library may limit analytics

2. Use with document chaining in lieu of ‘Loop&Reduce’

– Summary applications have excellent analytics. Drill down to direct discovery app for ‘just the details’

36

Simple analytics on a deeper

data set

Multi document applications

– Reduced analytics at detail

– Larger data sets

Effects of Direct Discovery

37

There is another way to leverage

these different approaches to

achieve the most with Qlik with

massive data volumes …

= On-Demand App generation

38

Section V On-Demand App generation

• Elastic Qlik analytics

• Use Direct Discovery to allow users to select fields and filters

• At the click of a button, a template Qlik application is loaded ‘on demand’ in-memory

with the requested data set

• Provides users with detail record examination & dashboard visualizations

• Option to persist or throwaway

• Rapid spin up / spin down

• Shopping cart approach for users:

39

On-Demand App generation: what you get ?

– Data:

• Detailed records and billions of data points

– Capability:

• Full breadth analytics and visualization

– Performance:

• In-memory for the users

– All the Best Practices:

• template uses data modeling best practices on whitelisted hardware

https://community.qlik.com/groups/financial-services-user-group/blog/2015/11/10/on-demand-app-

generation?sr=stream&ru=2692

https://community.qlik.com/groups/financial-services-user-group/blog/2015/11/10/on-demand-app-generation?sr=stream&ru=2692

On Demand App Generation

Big Data Decision Tree

Multiple

Data tiers

an issue?

Simple

Queries?

E.g. no Set

analysis

On Demand App

Generation

Direct

Discovery

Segmentation
Doc Chain/Loop&Reduce

NO

YES

NO

YES

< 500M

records in

per app NO

Thank you

