QlikView Overview
v [VY Incremental load is a very common task in relation to data bases. It can dramatically

Incremental reduce the time needed to reload a QlikView application. This document presents some
. QlikView incremental load scenarios that can help you develop a strategy to design and
Load Scenarios develop the optimum reload approach for your QlikView deployment.

What is incremental load?
It is defined as loading only the new or changed records from the database. The remaining records should already be available, one way
or another. With the help of QVD files it is possible to perform incremental load in most cases.

What is a QVD file?

A QVD (QlikView Data) file is a file containing a table of data exported from QlikView. QVD is a native QlikView format. It can only be
written to and read from QlikView. The file format is optimized for speed when reading data from a QLikView script but it is also very
compact. Reading data from a QVD file is typically 10-100 times faster than reading from other data sources.

What are QVD files good for?

QVD files can be used for many purposes. At least four major uses can be easily identified. In many cases two or more of them will be
applicable at the same time.

Increasing Load Speed

By buffering non-changing or slowly-changing parts of input data in QVD files, script execution can become considerably faster for large
data sets. For large data sets it will thus be easier to meet reload time-window limitations. When developing applications it is often
necessary to run the script repeatedly. By using QVD buffering in such situations repeated waiting times can be reduced significantly even
if the data set is not that large.

Decreasing Load on Database Servers

By buffering non-changing or slowly-changing parts of input data in QVD files, the amount of data fetched from external data sources can
be greatly reduced. This reduces load on external databases and network traffic. When several QlikView scripts share the same data it is
only necessary to load it once from the source database. The other applications can make use of the data from a QVD file.

Consolidating Data from Multiple QlikView Applications

Consolidation of data from multiple QlikView applications is possible with the help of QVD files. With the Binary script statement you can
only load data from only one single QlikView application into another. With QVD files a QlikView script can combine data from any number
of QlikView applications. This opens up possibilities e.g. for applications consolidating similar data from different business units etc.
Incremental Load

In many common cases the QVD functionality can be used to facilitate incremental load, i.e. only loading new records from a growing
database.

- L 1 g =
L W 4 . B &
YRI=1LY.V,
QI I k v [(wrA A"

Incremental
Load Scenarios

Basic incremental load process

1. Load new data from Database table (slow, but few records)
2. Load old data from QVD file (many records, but fast)

3. Create new QVD file

4. Repeat procedure for each table

The actual complexity of the solution depends on the conditions of the source database and the application requirements, but can be
broken down into a few basic cases, as outlined below. Most incremental approaches focus on loading new and changed records, some
can also address removing deleted records from QlikView that have been deleted from the source database.

Daily Incremental Reloads (Insert/Update)

Multi-QVD Incremental Reloads

Frequent Incremental Reloads (Insert Only) — Utilizes binary load approach
Historical data management using Daily/Monthly Stacked QVDs
Incremental Reloads (Insert/Update/Delete) with Deletion Flag available
Incremental Reloads (Insert/Update/Delete) with No Deletion Flag available

oahwN=

On the following pages you will find outlined solutions for each of these cases.

Scripting Techniques
After the scenarios are sample QlikView scripts illustrating these techniques.

Additional Resources

White Paper: How QlikTech uses QlikView - SalesForce.com
8QV10___ Simple_Incremental_Load.pdf
IncrementalLoad.zip (Sample QVW and data file)

QlikVtew " Scenario #1 — Daily Incremental Reloads (Insert/Update) h

Incremental On a daily basis, extract new and updated records (delta set) from source database. If no
. QVDs exist and also on a regular basis (such as weekly), extract all data from source
Load Scenarios database to create QVD files. Use native key field if available or create unique row key. Once

the delta set is downloaded, the QVD that was created from the previous load is then loaded
into the application. A WHERE NOT EXISTS clause is used to concatenate data from the
current QVD to the delta set that was downloaded. If the Id of the delta set exists within the
QVD, the assumption is that the data in the delta set is the relevant data and so any data
within the QVD that matches the unique identifier in the delta set is not loaded. All additional
data is concatenated to the delta set table. This approach requires an Modified Date or Create
Date in source database tables.)

3. Concatenate all records
without matching key present

New records / \
Source Database 2. Extract all records inserted ——

or updated since last extract. 1 Get last
Create unique identifier key —» - extract time

Changed records if it does not exist natively, Qvw
i.e. Description & Date T
Fina
4. Save

updated data

QlikView

Incremental
Load Scenarios

New records

Source Database

: a—1. Get i
Changed records 2. Extract—- - etime

w Sales
.Qvw

d Scenario #2 — Multi-QVD Incremental Reloads A

Conceptually identical to previous scenario, but appropriate for enterprise applications sharing
many data files. This approach has the incremental extract creating individual QVDs for later
consumption. These individual extracts can be run in parallel by Publisher to reduce load time
vs. a serial approach and to also allow muiltiple final applications to consume the produced
QVDs.

o /

3. Concatenate\ i

.QVW

StaginE\ / Invoices
4. Save
Cust |
.QVW

Finance

QI i kVI@W Scenario #3 — Frequent Incremental Reloads (Insert Only)

Incremental When required to frequently refresh data to stay current (hourly, every 10 minutes, etc), it
) may be preferred to binary load QVW file and supplement it with newly created records.
Load Scenarios This approach only requires a Create Date field in the source data.

New records

Source Database
Source Database

Append
\/
v
- -

\,Sav/

Weekly Full Extracts Frequent Incremental Reloads

. e : - ™
- Scenario #4 — Daily/Monthly Stacked QVDs
QlikView | ly y &

Incremental At the close of each day or month, extract and save source data to a distinct QVD file. The
) final application can be structured to load needed history records without going back to the
Load Scenarios source database. This approach allows maximum flexibility in managing data present in the

final application. It also can be used to address data sources where there is no history directly
kept by archiving daily/monthly records info QVDs.

_ J
January -
| / .QVW
Source Database Extract—p - Save—» Sales
.QVwW
Staging February
March
All
historical

periods

QlikView

Incremental
Load Scenarios

New records

" Scenario #5 — Incremental Reloads (Insert/Update/Delete)
Deletion Flag available

If deleted records are not physically deleted but only marked as deleted entries, then this
approach can be used. It follows the previous approach, but also checks to make sure that
records marked for deletion are not loaded from stored QVD.

-

~

/

4. Concatenate all records
without matching id present

Source Database 2. Extract all records inserted /

Changed records /

or updated since last extract.

\ - - 1. Get It’clst
extract time
.QvVw
Fina

Deleted records 3. Extract the ids of all records

marked for deletion.

5. Save
updated data

QlikView

Incremental
Load Scenarios

New records

Source Database

Changed records /

(Absence of deleted
records)

" Scenario #6 — Incremental Reloads (Insert/Update/Delete) b
No Deletion Flag available

If no Deletion Flag is available, then an extra step is needed to reduce the data set by no
longer present records. First perform the DB extract and QVD concatenate, then take this
combined set and INNER JOIN it against the source DB to remove those deleted records. The
INNER JOIN only needs to evaluate the key field, not all fields.

- /

3. Concatenate all records
without matching id present

2. Extract all records inserted
or updated since last extract.

~a - - 1. Get Igst
extract time
.QVW
Fina

4. INNER JOIN on Primary
Key from all database records
to reduce table by deleted rows

5. Save
updated data

QlikView

Incremental
Load Scenarios

Basic incremental load process

Insert and Update. (No Delete)

The standard case is when data in previously loaded records may have been changed between script executions.

The conditions are as follows:
* The data source an be any database

* QlikView loads records inserted into the database or updated in the database after the last script execution

+ A field ModificationDate (or similar) is required for QlikView to know which records are new.

» A primary key field is required for QlikView to sort out updated records from the QVD file.

* This solution will make the reading of the QVD file to be made in the standard mode rather than the super-fast mode. The end result
will however still be considerably faster than if the entire database had to be read.

Script example:

LET vQVDPath = 'Qvd\’; // Set QVD storage Directory

LET vExecTime = UTCY();

SET vLastExecTime = 0; // resetting vLastExecTime

/I As long as a QVD already exists, find the latest timestamp
for modified records. This will be used to generate the delta
set.

if not isnull(QVDCreateTime('$(vQVDPath)<tablename>.qvd"))
then

LoadTime:

Load Max(LastModifiedDate) as LastModifiedDate

From $(vQVDPath)<tablename>.qvd (qvd);

Let vLastExecTime =peek('LastModifiedDate’,0,'LoadTime");
Drop Table LoadTime;

end if

SQL SELECT Id,

FROM <tablename>

WHERE LastModifiedDate >=$(vLastExecTime) and
LastModifiedDate < $(vExecTime);

/I Check to see if this is the first reload. If it is, skip this step
if Not isnull(QvdCreateTime('$(vQVDPath)<tablename>.qvd"))
then

Concatenate (<tablename>)

LOAD *

FROM $(vQVDPath)<tablename>.qvd (qvd)

WHERE Not(Exists (Id));

end if

//If data exists within table, store to QVD.

if NoOfRows('<tablename>') > 0 then

STORE <tablename> INTO $(vQVDPath)<tablename>.qvd;
Drop Table <tablename>;

end if

QlikView

Incremental
Load Scenarios

Advanced incremental load process

Insert, Update and Delete

The most difficult case to handle is when records are actually deleted from the source database between script executions. The conditions
are as follows:

* The data source an be any database

* QlikView loads records inserted into the database or updated in the database after the last script execution

* QlikView removes records deleted from the database after the last script execution

504

* A field ModificationDate (or similar) is required for QlikView to know which records are new.

» A primary key field is required for QlikView to sort out updated records from the QVD file.

* This solution will make the reading of the QVD file to be made in the standard mode rather than the super-fast mode. The end result
will however still be considerably faster than if the entire database had to be read.

Simplified Script example:

LET ThisExecTime = Now() ;

QV Table:

SQL SELECT PrimaryKey, X, Y FROM DB _TABLE
WHERE ModificationTime >= #$ (LastExecTime)#
AND ModificationTime < #$ (ThisExecTime)#;
CONCATENATE

LOAD PrimaryKey, X, Y FROM File.QVD

WHERE NOT EXISTS (Primary Key) ;

Inner Join SQL SELECT PrimaryKey FROM DB TABLE;
If ScriptErrorCount = 0 then

STORE QV_Table INTO File.QVD;

Let LastExecTime = ThisExecTime;

End If

