
1.  
2.  

An approach to sheet level security
A frequent question I get is can we do sheet level security and the answer is yes but with a but.....

My view is that showing and hiding sheets is little connected to security and is more about adapting the experience of one app to different roles.
To achieve this there are different approached where one is to do sheet level security others are

Creating multiple apps one for each developer
Streamlining the app and use section access if the same visualisations is needed but with different data.

I would only recommend that the approach i describe in this post is used for a limited number of apps as it will quickly be hard to manage and
understand who have access to what.

So how can it be achieved?
I will outline a little different approach here that I believe can help with manageability of a solution.

The basic idea with the approach is that we want to configure two things:

Which apps that need sheet level security turned on
Who should have access to the sheets

To configure which apps should use sheet security we will use a custom property called @SheetLevelSecurity

For the apps where we want to apply sheet level security we will set this custom property to Yes.

We will then use this custom property to in two rules.

Name Stream

Resource
filter

App*



Condition (resource.resourcetype = "App" and resource.stream.HasPrivilege("read")) or ((resource.resourcetype = "App.Object" and
resource.published ="true" ) and resource.app.stream.HasPrivilege("read"))and resource.app.@SheetLevelSecurity!="Yes"

Actions Read

What this rule say is that for apps where we want to use sheet level security we should not automatically give access to the sheets just because
we have access to the stream.

The second rule is about how we decide who should get access

Name SheetLevelSecurity

Resource
filter

App.Object_*

Condition ((resource.objectType="sheet" and resource.app.@SheetLevelSecurity="Yes" andand resource.published ="true" 
user.group=resource.description) or ( resource.objectType!="sheet")) and resource.published ="true" and resource.app.stream.Has
Privilege("read")

Actions Read

What this rule describes is that the user will get access to published objects and for sheets they will only see sheets that contains a group in the
description field of the sheet that they are member off.

If we now have an app with multiple sheets by adding a single group to each description of a sheet this group would get access to the sheet.

 

Summary
This approach shows how sheet level security can be achieved with reasonable manageability. Future enhancements would be to allow for
custom properties on sheets which would allow centralised management in the QMC.

SheetLevelSecurity720p.mov

https://confluence.qliktech.com/download/attachments/55506385/SheetLevelSecurity720p.mov?version=1&modificationDate=1447855329697&api=v2

