
 

Generating missing data  

 

 

QlikView Technical Brief 

 

4 Feb 2013, HIC 

www.qlikview.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

2 

Contents 

Contents ........................................................................................................................................ 2 

Introduction ................................................................................................................................... 3 

Cases from real life ................................................................................................................ 3 

Basic table generation ................................................................................................................... 4 

Generate a table using Load … Resident ............................................................................... 4 

Example: Master Calendar using Load Resident ..................................................................................... 4 

Generate a table using Load … Autogenerate ........................................................................ 4 

Example: Master Calendar using Autogenerate ..................................................................................... 5 

The Peek function.......................................................................................................................... 6 

Example: Propagate a value downwards ............................................................................................... 6 

Example: Accumulate a number ............................................................................................................. 6 

Populating a sparsely populated field using Generate, Join and Peek ..................................... 7 

Example: Populating a table with conversion rates ................................................................................ 7 

Loops inside the Load statement ................................................................................................... 9 

While and Iterno()................................................................................................................... 9 

Example: Creating one record per day that a contract is valid ............................................................... 9 

The Subfield function ........................................................................................................... 10 

Example: Creating one record per skill from a list of skills .................................................................... 11 

Generating all combinations of several fields ............................................................................... 12 

Cartesian product using Join ................................................................................................ 12 

Example: Populating a table with warehouse balances ....................................................................... 12 

Intervalmatch ....................................................................................................................... 14 

Simulations in QlikView ............................................................................................................... 15 

Example: Monte-Carlo simulation of throwing two dice ...................................................................... 15 

Example: Monte-Carlo simulation of initial poker hand ....................................................................... 16 

 

  



 

 

3 

Introduction 

Often when you create a QlikView data model, you need to create data in the script. It could be that  

• an entire table is missing but that it can be inferred from other data. 

• some records are missing, but that common sense tells you that they should be there so 

you want to generate them so the corresponding values become clickable in the QlikView 

GUI. One situation is that you want to create several records from one single existing 

record.  

• the records exist, but you want to propagate a field value from the record immediately 

above.  

In all these cases, you need to generate data in the QlikView script. This Technical Brief is about 

different methods to do this. 

Cases from real life 

Conversion rates 

The source data is a table that lists currency conversion rates. However, this table only contains 

the dates where the conversion rate changed, not the dates between the changes. Then you 

need to generate the dates between the changes as individual records and use the value from 

the previous date. 

Warehouse balance 

Just as in the example above, only the changes are stored in the source data, and you need to 

generate the records that correspond to the days between the changes and in these new 

records use the balance of the last change. But in this example, you need to do this for each 

product in the warehouse, so that you have a balance for each combination of product and date.  

Contracts with a limited validity in time 

The source data has a table which is a list of contracts; one contract per record. Each record 

contains a “Begin” date and an “End” date that defines the validity time of the contract. The user 

will want to ask questions like “How many valid contracts do I have a given day?” To answer 

this, you need to generate all dates between the beginning and the end of the validity interval – 

you need to loop over the existing record – so that it is possible to click on the date in order to 

make this selection.  

Master calendar table 

The most common case is however the Master Calendar: In almost all QlikView applications 

there is a date and from this date you can infer year, month, week day, etc. This is best done as 

a separate table with date as a key linking to the original data. This table needs to be generated 

in QlikView and in it you can have many columns for the different calendar entities. 



 

 

4 

Basic table generation 

Generate a table using Load … Resident 

One common way to generate a new table is to load one or several fields from an already loaded 

table – typically the transaction table – using a distinct or group by clause. 

One drawback with this method is that the already loaded table might not have all values of the 

field in question. If you want all values, you should generate the table using autogenerate instead.   

Example: Master Calendar using Load Resident 

The master calendar is a table that often not exists in the source database, but is needed to 

hold all fields that can be inferred from date: Month, week no, week day, etc. It can be 

created in many different ways. The simplest way is to use a Load resident with a distinct 

clause that picks out all distinct values of a date that exists in a transaction table: 

MasterCalendar: 

Load distinct Date, 

 Year(Date) as Year, 

 Month(Date) as Month, 

 Day(Date) as Day 

Resident TransactionTable;  

The basic load statement creates a table with the distinct values of Date. This field is then in 

turn used to create fields for Year, Month and Day. Of course other fields like YearMonth, 

FiscalYear, etc. can be created. 

Generate a table using Load … Autogenerate 

Another common way to generate data in QlikView is to autogenerate records: 

Load RecNo() as X Autogenerate 100 ; 

This construction is very similar to the other possibilities of Load. You can feed the Load statement 

in different ways:  

Load … From  <File>  ; (from file) 

Load … Resident  <Table>  ; (from an already loaded table) 

Load … Inline  <InlineTable>  ; (from a table written in the script)  

Load … Autogenerate  <Number>  ; (from nothing) 

But with autogenerate there is no source – the records are generated and all field values must be 

derived from functions like Rand() or RecNo(). The number of records is specified in the number 

after the Autogenerate keyword. 



 

 

5 

Example: Master Calendar using Autogenerate 

Another way to create the master calendar is to use autogenerate to generate all dates in a 

range. To do this, you need to first define the range. One way is to look for the smallest and 

largest dates in the date field and then generate all the dates in between the two: 

MinMaxDate:  

Load Min(Date) as MinDate, Max(Date) as MaxDate resident TransactionTable; 

Let vMinDate = Peek('MinDate',-1,'MinMaxDate') - 1; 

Let vMaxDate = Peek('MaxDate',-1,'MinMaxDate')    ; 

Drop Table MinMaxDate;  

MasterCalendar: 

Load Date, 

 Year(Date) as Year, 

 Month(Date) as Month, 

 Day(Date) as Day; 

Load Date(recno()+$(vMinDate)) as Date Autogenerate vMaxDate - vMinDate;  

First the MinMaxDate table is created. It has one line only and contains the largest and 

smallest dates in the data. These values are stored in two separate variables using Let 

statements and the Peek() function. 

The variables are then used in a following Load statement to generate all dates in the range. 

Note that a preceding load is used to define all calendar fields, except the primary key 

“Date”. 

The variables can be created in other ways, for instance this year and last year only: 

Let vMinDate = Floor(YearStart(Today(),-1)) - 1; 

Let vMaxDate = Floor(YearEnd(Today()))    ; 

  



 

 

6 

The Peek function 

In all cases where you want to propagate values downward in a loaded table, the Peek() function is 

my preferred solution. This function returns the value of the preceding record. It can be used to 

fetch any record from any table, but here we are only interested in fetching the record immediately 

above, which is also the default behavior of Peek(). 

Example: Propagate a value downwards 

You want to replace NULL values with the value from the above record. Then you should 

use  

If( IsNull( Field ), Peek( Field ), Field ) as Field  

In this example, the condition is a simple “IsNull( Field )” but you can of course have other, 

much more complex logic here. 

In some cases, you want to propagate values downward in the loaded table, but just within some 

sort of group definition. Further, if the data isn’t sorted you need to do this using an “order by” in the 

load statement. However, “order by” will only work together with a resident load, i.e. you may need 

to do the operation in two steps.  

Example: Accumulate a number 

You have a number and you want to accumulate this amount over time, but only within the 

same product. In the following example, an additional field with the accumulated amount is 

created: 

TempTable_Data: 

Load Product, Date, Amount From DataTable ; 

Data: 

Load Product, Date, Amount, 

 If( Product=Peek(Product), // if the Product is the same as in the previous row 

  RangeSum(Amount,Peek(AccumulatedAmount)),  

  RangeSum(Amount)) as AccumulatedAmount 

 Resident TempTable_Data 

 Order By Product, Date ;  // order by Product and by Date within the Product 

Drop Table TempTable_Data ;  

In this example, two passes are made over the data. The reason is that you need the “order 

by” and this is only possible within a resident load, i.e. in the second pass.  

The Peek() function is used first to check that the record pertains to the same product as the 

previous record, then a second time to fetch the “AccumulatedAmount” value from the 

previous record.  



 

 

7 

 

 

The RangeSum() function is used to add the two numbers. The reason you need to use this 

function is that normal addition does not work for NULL values, whereas RangeSum() 

considers NULL as a zero. 

Finally, the temporary data table is dropped. 

Populating a sparsely populated field using Generate, Join and Peek 

Another common case where you need the Peek() function is when you want to populate a 

sparsely populated field. Common cases are conversion rates and warehouse balances where only 

the dates with changing numbers can be found in the data.  

In both these cases, you often want to ask the question: “What was the status on this specific day?” 

In other words, you want to click on a reference date to see the number that is associated with this 

date – but the date might not exist in the data. 

Example: Populating a table with conversion rates 

The source data is a table that lists conversion rates. However, the table only contains the 

dates where the conversion rate changed, not the dates between the changes. Hence, you 

want to insert missing dates and fill the “Rate” field with the appropriate value. Then you 

should first generate the days, join them onto the Rate table, sort it according to Date and 

finally propagate above values downwards, when appropriate:  

TempTable_Rates: 

Load Date, Rate From Rates ; 

MinMaxDate:  

Load Min(Date) as MinDate, Max(Date) as MaxDate resident TempTable_Rates; 

Let vMinDate = Peek('MinDate',-1,'MinMaxDate') - 1; 

Let vMaxDate = Peek('MaxDate',-1,'MinMaxDate')    ; 

Drop Table MinMaxDate;  

Join (TempTable_Rates) 

Load Date(recno()+$(vMinDate)) as Date Autogenerate vMaxDate - vMinDate; 



 

 

8 

Rates: 

NoConcatenate Load Date,  

 If( IsNull( Rate ), Peek( Rate ), Rate ) as Rate 

 Resident TempTable_Rates 

 Order By Date ; // so that above values can be propagated downwards  

Drop Table TempTable_Rates;  

The picture below illustrates the process.  

 

  



 

 

9 

Loops inside the Load statement 

Sometimes when loading data you want to load the same record (with some small variation) 

several times. It could be that the source data contains a range – an upper bound and a lower 

bound – and you want a second table that has one record per discrete value in the range. It could 

also be that one record in the source data contains a list of possible discrete values and you want a 

second table with record per value in the list. You can do such loops either with a While loop or 

using the Subfield() function.  

While and Iterno() 

A loop inside the Load statement can be created using the While clause: 

Load Date, IterNo() as Iteration From … While IterNo() <= 4 ; 

Such a Load statement will loop over each input record and load this over and over as long as the 

expression in the While clause is true. The IterNo() function returns “1” in the first iteration, “2” in 

the second, etc. 

The While clause can be combined with any of the source possibilities: 

Load … From  <File>  While <Expression> ;  

Load … Resident  <Table>  While <Expression> ; 

Load … Inline  <InlineTable>  While <Expression> ; 

Load … Autogenerate  <Number>  While <Expression> ; 

Load … While  <Expression> ;  Load …  

A Load statement with a While clause cannot at the same time have a Where clause. The reason is 

that it would be unclear which of the two clauses should be evaluated first. If you want to combine 

them, you should use a preceding Load. I.e., if you want to loop over only the records that fulfill the 

Where condition, you should use the following construction:   

Load … While <Expression> ; Load … From <File> Where <Expression> ;  

And if you want to loop over all records, but just keep the ones that fulfill the where condition, you 

should use the following construction: 

Load … Where <Expression> ; Load … From <File> While <Expression> ;  

The clause in the second of the two Loads will be evaluated first and the result will be piped into 

the first Load. Which one to choose depends on which precedence you want: Should the filter of 

the Where clause be applied before or after the loop?  

Example: Creating one record per day that a contract is valid 

In this example, the source data is a table that lists a number of contracts. Each contract has 

a begin day and an end day. It could for instance be insurance policies, where an insurance 



 

 

10 

policy is valid a limited time. The analysts of the insurance company would then probably 

want to ask the question: “How many valid contracts did we have on this specific day?” In 

other words, you want to click on a reference date to see the count of insurance policies that 

are associated with this date – but this date might not exist in the source data.  

Then you need to first load all policies in one table and link this to a table that contains one 

record per contract and date. The second table is generated using a While loop that loads 

not only the “From” date and the “To” date, but also all dates in between:  

Policies: 

Load PolicyID, BirthDate, FromDate, ToDate, OtherPolicyAttribute 

 From Policies;  

Policies_x_Dates:  

Load PolicyID,  

 Age( FromDate + IterNo() – 1, BirthDate ) as Age, 

 Date( FromDate + IterNo() – 1 ) as ReferenceDate 

 Resident Policies 

 While IterNo() <= ToDate - FromDate + 1 ; 

Note that the Policies table has exactly one record per insurance policy, and the newly 

created Policies_x_Dates table has exactly one record per combination of policy and date. 

Note also that there are other fields that should be put in the Policies_x_Dates table, e.g., 

the age of the insured person, since it depends on the reference date. 

 

 

The Subfield function 

If you have list of values in one field and you want to split the record into several records (have one 

record per value in the list) you should instead use the subfield function. 

Load RecordID, Subfield( ListOfValues, '|') as Value Resident … ; 

Such a Load statement will loop over each input record and load it several times, once for each 

value in the list of values. The return value of the Subfield() function will be the n:th value in the list. 



 

 

11 

The second parameter of the Subfield() function defines the separator of the list. It is possible to 

have a third parameter in the Subfield() function, but then the function will lose its looping 

functionality.  

Example: Creating one record per skill from a list of skills 

The source data is a table that lists a number of skills per employee.  

     

The number of individual skills as well as the order is arbitrary. The goal is to have the 

individual skills in a separate field. 

Then you should first load all employees in one table with the list of skills in one field. This 

table should be linked to a second table that has a field with the individual skills. The second 

table is generated using a Subfield() call that makes the Load statement loop over the list of 

skills:  

Employees: 

Load [Emp No], [Employee Name], OtherEmployeeAttribute, Skills  

 From Employees;  

Employees_x_Skills:  

Load [Emp No],  

 Trim(Subfield( Skills, ',' )) as Skill  

 Resident Employees; 

The Trim() function removes unwanted extra leading or trailing blanks that may exist inside 

the list of skills. 

  



 

 

12 

Generating all combinations of several fields 

Cartesian product using Join 

Sometimes you need to compare two or more fields and generate all possible combinations 

between them. In SQL, you can easily do this using a Cartesian product: 

SQL SELECT Table1.A, Table2.B FROM Table1, Table2;  

It is basically a join, but without joining condition. 

This will create all combinations of the two fields, without any limitation from other relationships, 

and you will get a table that most likely has many more records than any of the two individual 

tables. 

Using Load statements, you can do the same: 

Load A From Table1.csv ; 

Join  

Load B From Table2.csv ; 

Once you have made the join, you have a new table that you can process further, e.g. only select 

some records that fulfill specific demands or generate new fields based on the initial ones. 

However, further processing must be done in a second pass using a resident Load. Finally the 

initial table must be dropped. 

Example: Populating a table with warehouse balances 

In this example, the source data is a table that lists the balances of a number of products in a 

warehouse over a number of dates. However, only records where the balance has changed 

exist. This means that for a specific product, there may be dates missing. For these dates, 

the latest balance should be used. 

The example is similar to the previous example on conversion rates, but with the difference 

that there exist several products and each product has its own series of dates and balances. 

Hence we now have a two-dimensional problem: Each combination of product and date 

should exist in the table. 

In such a case you should first load all existing product balances (step “A” below). The 

second step is to generate all combinations of product and date using a join (“B” below).  

The third step is to run through all these combinations picking out the missing ones (using 

“Where Not Exists()”) and appending these to the initial product balance table (“C” below). 

Then you need make an additional pass in the ordered product balance table, so that you 

can propagate the appropriate values downwards (“D” below).  

And finally, you need to drop the temporary tables (“E” below). 



 

 

13 

// ----   A: Load all existing product balances   

TempProductBalances:  

Load ProductID, Date, Balance,  

 ProductID & '|' & Num( Date ) as Product_x_DateID 

 From ProductBalances;  

// ----   B: Create all combinations of product and date  

TempProduct_x_Dates:  

Load distinct ProductID Resident TempProductBalances; 

Join (TempProduct_x_Dates)  

Load Date(recno()+$(vMinDate)) as Date Autogenerate vMaxDate - vMinDate; 

// ----   C: Append missing records onto the product balance table  

Concatenate (TempProductBalances)  

Load * Where not Exists( Product_x_DateID ); 

Load ProductID, Date,  

 ProductID & '|' & Num( Date ) as Product_x_DateID 

 Resident TempProduct_x_Dates ;  

// ----   D: Create final product balance table. Propagate value from above record.  

ProductBalances: 

NoConcatenate  

Load ProductID, Date,  

 If( ProductID=Peek( ProductID ) and IsNull( Balance ), 

  Peek( Balance ), 

  RangeSum( Balance )) as Balance 

 Resident TempProductBalances 

 Order By ProductID, Date; // so that above values can be propagated downwards  

// ----   E: Drop all temporary tables  
Drop Table TempProduct_x_Dates, TempProductBalances;  

  



 

 

14 

Intervalmatch 

A special case is when you need to generate all combinations between a numeric field, e.g. the 

date of an event or a transaction and numeric intervals defined in another table. In SQL, you would 

solve this by joining the two tables and use a BETWEEN condition: 

SQL SELECT Events.Date, Intervals.BeginDate, Intervals.EndDate  

 FROM Events, Intervals  

 WHERE Events.Date BETWEEN Intervals.BeginDate AND Intervals.EndDate; 

In QlikView you would normally use the IntervalMatch prefix to solve this problem. The general 

structure of the script would be to first load the events table and the intervals table as they are, and 

then generate a third table defining a bridge between the two. 

Events:  

Load TransactionID, Date, <OtherEventFields> From Events;  

Intervals:  

Load IntervalName, BeginDate, EndDate, <OtherIntervalFields>  From Intervals; 

IntervalMatchBridge:  

IntervalMatch (Date)  

Load distinct BeginDate, EndDate Resident Intervals;  

The intervalmatch will compare the intervals defined by BeginDate and EndDate with the discrete 

values of Date and generate all combinations.  

 

Note that with IntervalMatch you will get a synthetic key in your data model. This is nothing you 

need to worry about. Intervalmatch is one of the cases where a synthetic key is the most efficient 

way of modeling the data. In fact, BeginDate and EndDate together form a primary key for the 

intervals, so it is quite natural to have them form a synthetic key.  

  



 

 

15 

Simulations in QlikView 

Using all the above techniques, it is fairly straightforward to make simulations in QlikView. You can 

combine autogenerate and while loops to create data sets on which you make statistical analysis. 

When doing so, there are some functions that are very useful: 

• RecNo() – the record number of the input record 

• RowNo() – the record number of the output record 

• Rand() – a generator of random numbers,  

• Ceil() – round upwards to nearest integer, 

• Pick() – pick a specific value in a list of values 

A small note of warning: If you are to use the result of the simulation for anything relevant, you 

need to be aware of the uncertainties (statistical errors) of the result, which can be calculated using 

standard statistical methods.  

If you want to use an empirical approach to get a feeling for how large the uncertainties are, just 

run the script several times to see how much a value changes from time to time. 

Example: Monte-Carlo simulation of throwing two dice 

What is the chance of getting a sum higher than a specific number when throwing two dice? 

To simulate this, you need to generate a large number of throws and randomly create the 

result of throwing two dice: 

DiceThrowing:  

Load *, 

 Dice1 + Dice2 as SumOfDice;  

Load  

 RecNo( ) as ThrowNo,  

 Ceil( Rand( ) * 6 ) as Dice1,  

 Ceil( Rand( ) * 6 ) as Dice2 

 Autogenerate 100000;  

This script will autogenerate 100000 throws and store the result of each throw in the field 

SumOfDice. The result can then be analyzed in a normal QlikView chart.  

Below I have a bar chart and a straight table sorted descending showing the result. As 

formulae, I have used 

Percentage = Count ( ThrowNo ) / Count ( total ThrowNo )  
Accumulated = RangeSum( Above( Accumulated ), Percentage )  



 

 

16 

 

 

 

From these, you can deduce that the chance of getting nine or more with two dice is around 

28%. 

Example: Monte-Carlo simulation of initial poker hand 

What is the chance of getting a full house in the initial hand? To simulate this, you need to 

generate a large number of hands and randomly create the set of cards. 

In the below solution, I generate a random number “ShuffleSeed” and order the deck by this 

number to get a shuffled deck. Then I deal ten hands with five cards each from the shuffled 

deck. The field “HandNo” is the ID for which hand it is.  

This, I repeat 10000 times in a For – Next loop. 

Finally, I analyze the result by additional Load statements using Group By, looking for pairs, 

three of a kind, full house etc.:  

// ---- Create a Deck of cards 
DeckOfCards: 
Load   *, 
 CardValue & ' of ' & Suit as CardName; 
Load  
 Pick(RecNo(),'Spades','Hearts','Diamonds','Clubs') as Suit, 
 Pick(IterNo(),'2','3','4','5','6','7','8','9','10','Jack','Queen','King','Ace') as CardValue 
 Autogenerate 4  
  While IterNo() <= 13; 
 
 

  



 

 

17 

// ---- Shuffle and deal the deck many times 
For vHandNo = 1 to 10000   // ---- ---- ---- ---- begin For-Next loop ---- ---- ---- ---- 

 // ---- Load the deck and assign a random number to each card 
 LoadDeck: 
 Load *,  
  Rand() as ShuffleSeed  
  Resident DeckOfCards; 
 
 // ---- Order randomly and deal. Five consecutive cards form a hand 
 PokerHands: 
 Load  
  CardName,  
  Suit,  
  CardValue,  
  10*$(vHandNo) + Mod(RecNO(),10) as HandNo 
  resident LoadDeck 
   Where RecNo() <= 50 
   Order By ShuffleSeed; 
  
 Drop Table LoadDeck; 
Next vHandNo   // ---- ---- ---- ---- end For-Next loop ---- ---- ---- ---- 
Drop Table DeckOfCards; 

 
// ---- Check each hand for Flush 
GroupByHandNo: 
Load  
 HandNo, 
 If(Count(distinct Suit)=1,1,0) as HandHasAFlush 
 Resident PokerHands  
  Group By HandNo; 
 
// ---- Check each card value in the hand for pair, three of a kind and four of a kind 
GroupByHandNoAndCardValue: 
Load  
 HandNo, 
 CardValue as CardInCombo, 
 If(Count(CardName)=2,1,0) as ComboIsPair, 
 If(Count(CardName)=3,1,0) as ComboIsThreeOfAKind, 
 If(Count(CardName)=4,1,0) as ComboIsFourOfAKind 
 Resident PokerHands  
  Group By HandNo, CardValue; 
 
 

  



 

 

18 

// ---- Check each hand in the above table for two pairs and a full house 
GroupByHandNo2: 
Load *, 
 If(HandHasAPair and HandHasThreeOfAKind, 1,0) as HandHasAFullHouse; 
Load  
 HandNo, 
 If(Sum(ComboIsPair)=1,1,0) as HandHasAPair, 
 If(Sum(ComboIsPair)=2,1,0) as HandHasTwoPairs, 
 Max(ComboIsThreeOfAKind) as HandHasThreeOfAKind, 
 Max(ComboIsFourOfAKind) as HandHasFourOfAKind 
 Resident GroupByHandNoAndCardValue  
  Group By HandNo; 
 

The result is displayed in a pivot table with six expressions 

Pair = Count ({1<HandHasAPair={1}>} DISTINCT HandNo)  
/ Count ({1} DISTINCT HandNo)  

Three of a Kind = Count ({1< HandHasThreeOfAKind={1}>} DISTINCT HandNo)  
/ Count ({1} DISTINCT HandNo)  

Four of a Kind = Count ({1< HandHasFourOfAKind={1}>} DISTINCT HandNo)  
/ Count ({1} DISTINCT HandNo)  

Two Pairs = Count ({1< HandHasTwoPairs={1}>} DISTINCT HandNo)  
/ Count ({1} DISTINCT HandNo)  

Full House = Count ({1< HandHasAFullHouse={1}>} DISTINCT HandNo)  
/ Count ({1} DISTINCT HandNo)  

Flush = Count ({1< HandHasAFlush={1}>} DISTINCT HandNo)  
/ Count ({1} DISTINCT HandNo)  

 

 
 

HIC 


