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E X E C U T I V E  S U M M A R Y  

• Qlik’s data warehouse automation provides end to end data warehouse lifecycle management 

including management of the data model 

• The data model in Qlik Compose enables automation and near real-time data processing 

• Understand best practices for common data warehouse modeling scenarios 

I N T R O D U C T I O N  

Qlik Compose data warehouse projects provide end to end lifecycle 

management of your data warehouse including capabilities to manage 

the central warehouse model, automate extract, transform and load (ETL) 

processes and restructuring data into data marts designed for bi 

consumption.   The most important facet of any data warehouse is 

building a data model that supports the needs of the business and 

enables the conformity of data from enterprise systems.    

Qlik Data Integration provides data modeling capabilities that enable real-

time data warehousing and automation of the data mart design and ETL 

code.  

This technical paper is a guide to understanding Qlik Data Integration 

warehouse modeling design techniques and best practices for common 

business scenarios.   
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Understanding the Qlik Compose Model  

Qlik Compose model generation provides the foundational layer for your data warehouse solution.  It 

not only serves to structure the data in an efficient, business centric fashion (leveraging data vault 

modeling techniques such as hubs and satellites), it also drives much of the intelligence in the ETL 

automation and data mart creation. Therefore, it’s important to understand modelling best practices and 

how certain architectural decisions can impact your data warehouse projects and timelines. 

Good modeling practices can:  

• Reduce complexity of ETL developed by the data warehouse team 

• Reduce data processing SLAs with CDC integration 

• Increase the amount of data warehouse automation  

• Increase the centralization data processing logic and reduce complexity of data mart design 

 

Qlik provides four out-of-the-box methodologies for implementing the model:  

1. Intelligent discovery  

2. ErWin model import  

3. CSV import  

4. Manual-create data model with visual tools.   

Note: The tips provided in this paper should be followed regardless of the chosen modeling method. 

Qlik Modeling Concepts 

Explaining generic database modelling concepts is out of scope for this paper, but it is important to 

understand that the Qlik model is defined and designed using similar modeling definitions  

• Entities 

• Attributes 

• Relationships 
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These logical constructs are then physical implemented in the data warehouse as  

• Tables – Entities are physically created as 1: N tables using Hubs and Satellites 

• Columns – Attributes are physically created as columns in Hubs and Satellites 

• Relationships – Although not physically implemented as foreign keys (FK’s), relationships have a 

direct impact on the ETL and data mart automation functionality within Qlik.   

Qlik’s modeling philosophy is based on the data vault methodology. However, modeling in Qlik does not 

require in-depth knowledge of data vault specifics. Rather, we provide logical modeling features while 

automatically managing the underlying physical data vault.  Note Qlik can also handle advanced data 

vault management scenarios such as multiple satellites to manage fast and slow-moving data. The Qlik 

model provides the structure for the data warehouse from which data marts are generated. 

Qlik Data Marts 

While modern data platforms such as Amazon Redshift, Azure Synapse and Snowflake continue to 

rollout more scalability features, data warehouses still need to structure their tables for efficient queries 

to support granular and summary analytics. Those tables are commonly referred to as data marts. Qlik 

provides a data mart wizard that helps you rapidly design the tables and generates all of the necessary 

automation code to fit your business requirements. 

Qlik’s notion of data marts are star-schema oriented materialized (physical) structures that are built 

from the central data warehouse model. The central model has a direct impact to the data mart 

structures that can be built and automated.   

In addition, fact tables can also be built from any data warehouse table or tables related to each other 

in the data warehouse model. Furthermore, dimensions are selected from tables related to the data 

warehouse fact tables. Note that dimensions do not need to be modeled in the central data warehouse 

as de-normalized entities since Qlik automatically de-normalizes tables related to the dimension “root” 

(or grain of the dimension).  Processing of this data is done in an automated, incremental fashion. 

Modeling for Real-Time Data Warehousing 

A common requirement for Qlik data warehouse automation solutions is to enable near real-time data 

warehousing through the combination of Qlik Replicate and Qlik Compose.   Data warehouses often 

require delivering denormalized structures in the data mart to support BI / visualization and reporting 
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performance.  This leads to complex ETL particularly related to change data capture (CDC) based 

processing. A best practice is to design and manage a more normalized structure for the central 

warehouse model while leveraging Qlik’s data mart automation to handle incremental denormalization 

requirements.  This concept is described in detail in the white paper Modeling Real-time Data 

Warehouses in Compose.  It is recommended to review this whitepaper first as it provides a 

foundational concept for other modeling practices in Qlik Compose – leveraging normalization 

techniques to support real-time processing.  

Thinking Hierarchically with Qlik Compose Models 

The Qlik Compose model defines the central warehouse structures which feed data marts for data 

consumers.   Qlik Compose provides features to design the components of a data mart (facts and 

dimensions) which support star and constellation designs (multiple fact tables with conformed 

dimensions).   The design of these artifacts is derived from the central model.  To enable ETL process 

automation, data mart design must ensure integrity in the granularity of the object (fact or dimension).   

For example, ensuring that automated ETL processes for a “Product” dimension does not create 

duplicate records when loading the dimension table. In Qlik, this is enforced by selecting an entity as 

the dimension root and then leveraging the relationship hierarchies to determine which entities are 

viable for denormalization.   This means that while any entity in the model can be selected as the root 

(or grain) of a dimension / fact table, only entities that are ancestors (parents in a primary key – foreign 

key relationship) of the root can be automatically denormalized into the object.   

Consider the Qlik Compose model  below that was discovered from a source system.   In the source 

system the ProductDescription table has a foreign key relationship to the Product table (depicted by the 

relationship arrowing pointing from the child to the parent). 

 

Figure 1: A normalized Qlik Compose model for product data 

When defining a Product dimension with ETL process automation, Qlik must leverage the model and 

relationships to ensure there is integrity for data loaded into the Product dimension.      Selecting the 

root entity of Product enables the automated denormalization of ProductSubcategory, ProductCategory, 

https://community.qlik.com/t5/Qlik-Compose-for-Data-Warehouses-Documents/Modeling-Real-time-Data-Warehouses-in-Compose/ta-p/1724153
https://community.qlik.com/t5/Qlik-Compose-for-Data-Warehouses-Documents/Modeling-Real-time-Data-Warehouses-in-Compose/ta-p/1724153
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ProductModel and UnitMeasure.   These are ancestors of the Product entity and thus guaranteed to not 

impact the granularity of a Product dimension.   However, ProductDescription is a child of Product 

meaning it could have multiple records per Product.   Therefore ProductDescription cannot be included 

in a Product dimension as its currently modeled.  (Qlik Compose cannot guarantee the additional join 

would not duplicate entries for the Product dimension). 

Resolving this (and many other modeling scenarios) requires thinking hierarchically to restructure the 

model to enable data mart automation.  Source systems often have structures built for operational 

processing and flexibility which are not always appropriate for data warehousing and automation.   The 

remainder of this paper will provide best practices to model hierarchically to resolve specific source 

data / business scenarios.  Additional white papers are referenced that provide further details on end to 

end design in Qlik Compose for specific scenarios (modeling and ETL processing).  

Considering Relationship Direction  

A common scenario in source systems is to have one-to-one relationships between tables.   Often 

times 1:1 cardinality define supertype-subtype relationships or even vertical partitioning of data 

elements (there are of course other use cases, but we will focus on those).   Let’s consider an example 

where our sales database contains orders for two types of Customers – individuals and businesses.   In 

the source system this has been modeled leveraging supertype-subtype concepts.    Discovering the 

source system provides the below Qlik Compose model. 

 

Figure 2: Supertype-subtype relationships as discovered by Qlik Compose 

In this model, the customers entity represents the supertype (i.e. parent) and individuals and 

businesses are the subtypes (or children).   As previously discussed when modeling in Qlik Compose 

you should think hierarchically.  While the parent child relationships make sense in the OLTP world, for 

Qlik Compose, the hierarchical nature of data mart processing negates the use of the individuals or 

businesses entities for a customer dimension.    Modeling these structures in Compose requires the 

reversal of the relationship such that customers is a child to both individuals and businesses.   This is a 

manual process to delete the current relationships and create 2 new relationships from customers to 
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individuals and customers to businesses.   To create the new relationships navigate to the customers 

entity in Model management and select Add Relationship to create the foreign key relationship from 

customers  to individuals.   Select the appropriate configuration for History type and if required input a 

Prefix to clearly describe the relationship. 

 

Figure 3: Relationship created from customers to individuals and the Model depicting the reversed relationships  

Repeat the relationship creation to relate customers to businesses.   Figure 3 shows the creation of a 

relationship from customers to individuals and the appropriate model in Qlik Compose.    The 

customers entity can now be the root entity for a customer dimension and attributes from individuals  

and businesses can be guaranteed to not impact the integrity of the dimension grain.   

The aforementioned ProductDescription  to Product relationship is another example where reversing 

the relationship between the two entities would maintain the business model of the data while enabling 

data mart automation.   In Figure 4, the relationship between Product and ProductDescription has been 

reversed.   This guarantees the integrity of Product data when building the data mart objects in 

Compose. 
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Figure 4: Model depicting the reversed relationship from ProductDescription to Product  

 

Pivoting key-value tables 

Core operational systems are often modeled in third normal form (3NF) for faster inserts, updates, and 

deletes. However, while this is an appropriate structure for a transactional system it does not lend itself 

to business intelligence (BI), dashboarding, and reporting. Although ETL tools and manual SQL 

scripting are potential solutions, many find them time consuming to implement, even for common data 

transformation tasks such as pivoting data. 

Consider the simple example below. An application data source has a CustomerContact table that 

stores a distinct contact type and value for each customer. Additionally, a customer with multiple 

contact types are stored as multiple rows.  

 

Figure 5. CustomerContact table and model as Discovered by Compose 

But what happens when our business users request reports that consist of just one row per customer 

as below?  
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Figure 6. A Pivoted Data Set 

Applying hierarchical concepts to this structure immediately tells us that the relationship between a 

customer entity and the customer_alt_contacts is a one-to-many relationship that precludes the contact 

information from being included in an automated customer dimension.   The solution is to adjust the 

model and pivot the attributes required for analytics into a flat structure.   Pivoting is the process of 

converting multiple rows in a single row with multiple columns and is often handled by ETL processing.   

However the model must also be structured appropriately.   This can be done by manually creating a 

new entity or altering the existing entity and then “reversing the relationship” such that a new 

customercontact table is now a parent to the customer entity 

 

 

Figure 7. Restructured CustomerContact entity and reversed relationship to hold the pivoted data set 

Figure 7 shows the pivoted view of data in the model.   Each type of contact required in the data 

warehouse has been defined as an explicit column.   To complete the modelling scenario we must 

implement a relationship reversal (as well as the entity changes) to reflect a hierarchical view of 

customer → customer_contact entity.   This supports our business requirements to provide multiple 
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points of contact in our data warehouse and BI solutions as well as enabling Qlik Compose’s data mart 

automation.     

This use case is defined in more detail (including ETL mapping features to support real-time data 

pivoting) in the Defining Data Models and Mappings for Pivoting Data in Qlik white paper on 

community.qlik.com. 

Restructuring Associative Entities (handling many-many 

relationships) 

Operational source systems often manage many to many business relationships via associative entities 

(also referred to as bridge tables).   In operational systems these associative entities provide flexibility 

for adding additional instances of the relationships.   When considering modeling these structures in a 

data warehouse, an associative entity could be the basis for a fact table, or it could provide for 

denormalization of data to represent a dimension.    

In Compose any associative table that represents a basis for a fact table does not need additional 

design.   Continuing with our sales example – an order can have multiple products and a product can 

be on multiple orders.   As such an order_details entity provides the association between orders and 

products.    Figure 8 shows the Compose model for such a scenario.   There is no need to alter this 

model as order_details becomes the root for our SalesFact table in the data mart and allows for orders, 

products, and customers dimensions. 

 

Figure 8: Associative entity the provides the basis for facts and measures 

Associate entities that represent relationship instances for dimensional data however will likely need to 

be restructured.   This is common in any data warehouse implementation and is not specific to Qlik 

Compose.   Let’s consider such a scenario, expanding on our sales data model with customers and 

customer addresses.   Figure 9 shows the source model (discovered in Compose) for a scenario where 

a customer may have many addresses and each discrete address could be used by multiple customers 

(potentially for different reasons).     

https://community.qlik.com/t5/Qlik-Compose-for-Data-Warehouses-Documents/Defining-Data-Models-and-Mappings-for-Pivoting-Data-in-Qlik/ta-p/1724161


Qlik Compose Modeling Best Practices 

 
11 

Figure 9: Associative entity handling many to many in reference data 

The customer_address table depicts the relationship between a customer and their addresses, and 

how each address is used.   For example customerA could use Address1 as a home address and 

shipping address but have Address2 as the billing address. 

 

Figure 10: The customer_address table as its represented in the source 

Even without Compose this type of scenario often requires de-normalizing this data to a single record 

or via multiple relationships so that a single customer has specific address attributes for each type of 

address (home, shipping, billing).    In data warehousing scenarios, we understand the types of 

analytics and reporting required from our business data and those requirements should be used to help 

define the model in Compose.   In our case we are concerned about reporting on home, shipping, and 

billing address types.    Remember, for Compose modeling we must think hierarchically.   This means 

either restructuring customer_address or customers to pivot the address usage into multiple 

relationships from customer to address.    

Option 1 – Pivot the associative entity and create multiple relationships 

One option that maintains an associative entity to manage multiple relationships is to pivot the different 

address types into multiple columns.  This results in a customer_address entity as shown in Figure 11 

where customer_address houses 3 role playing relationships to the addresses entity.     
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Figure 11: customer_address entity pivoted to support role-playing relationships to the address table 

Figure 12 shows the hierarchical relationship structure for the altered model which now allows for the 

denormalization of customer and 3 addresses when designing the dimensional structures. 

 

 

Figure 12: Hierarchical relationship from customers to address and data mart selection to automate 

denormalization of customers and their addresses via role-playing 

Option 2 – Create multiple relationships between Customer and Address 

Another option to manage the associative table in a hierarchical fashion follows the same principals as 

pivoting the associative entity – creation of multiple relationships.  However, in this scenario those 

relationships will not be managed as their own entity, but rather just relationships between customers 

and addresses.   In this scenario the customer_address table is deleted from the model, and 3 

relationships are defined in the customer model to support the 3 address types that need to be 

managed.   Figure 13 shows the adjusted customers table with the role-playing relationships and the 

model depiction 
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Figure 13: Customers entity with role-playing relationships and the graphic depiction of the model 

This modelling method supports the hierarchical relationship requirements for Qlik Compose to 

automate the data mart processing and the business requirements for analytics and reporting.   Note 

that Compose provides features to support pivoting data in near real-time through ETL mapping 

capabilities.  This is out of scope for this white paper, but defined in further detail in the Defining Data 

Models and Mappings for Pivoting Data in Qlik white paper on community.qlik.com.  

Managing Universal Lookup Tables and Role-Playing 

relationships 

Operational systems such as ERP solutions often leverage universal lookup tables that provide 

descriptive values for multiple types of “business codes”.   For example instead of having discrete 

tables for customer type codes, customer finance categories and product type codes, they are all 

maintained within a single lookup table.   The source application and any reports would join to the 

universal lookup table with filters to select the required set of records.   

 

Figure 14: A universal lookup table example 

https://community.qlik.com/t5/Qlik-Compose-for-Data-Warehouses-Documents/Defining-Data-Models-and-Mappings-for-Pivoting-Data-in-Qlik/ta-p/1724161
https://community.qlik.com/t5/Qlik-Compose-for-Data-Warehouses-Documents/Defining-Data-Models-and-Mappings-for-Pivoting-Data-in-Qlik/ta-p/1724161
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 There are a few different methods to modeling universal lookup tables in Qlik Compose.    For our 

example, Figure 15 represents the all_code_lookups table which houses different types / categories of 

lookup tables in a single structure. 

 

Figure 15: Universal Lookup table as discovered from the source 

This table relates to customer and product entities with descriptive values for customer type and 

finance category and product type codes (figure 16).   The code_category and code_type columns 

provide the context for the lookup code and descriptive values. 

 

Figure 16: The Compose model maintaining the universal lookup 

This entity could be left as is with multiple relationships defined from the customer / product entities to 

the all_code_lookups table.   However, it is often better in a data warehouse scenario to model the 

individual lookup tables as part of the core model so that the model is more descriptive. 

The below images show individual lookup tables modeled for CustomerType and 

CustomerFinanceCategory to house the code and descriptive values for each lookup domain. 
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Figure 17: Discrete entities defined for individual lookup domains and the final model 

The final model is depicted in Figure 17 to show the 3 modeled lookup tables and their relationships to 

the customers and products entities.    

 

Figure 18: Mapping filters applied for CustomerFinanceCategory mapping 

The ETL processing for these is simple.  Each mapping will source from the all_code_lookups table 

delivered by Replicate with simple filters for the code_category and code_value to reduce the data for 

the specific lookup domain (figure 18).  This technique provides a more descriptive model definition for 

lookup tables instead of having a generic lookup table that is used for multiple purposes. 
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Modeling Hierarchies 

Hierarchies play an important part in analytic solutions and data warehouse design.   They often 

provide aggregation and drill paths for data.  There are 3 common types of hierarchies that need to be 

managed in a data warehouse solution:   Standard (or fixed-level) hierarchies, Self-referencing (or 

recursive) hierarchies and Ragged Hierarchies. 

Standard or Fixed Level Hierarchy in Compose 

Standard or fixed level hierarchies such as the Product→ ProductSubcategory→ ProductCategory 

shown in the Compose model below are simple to design and model.   These could be modeled in a 

single entity with attributes for each level and multiple ETL mappings, each loading a specific level of 

the hierarchy, or modelled in a normalized fashion as shown below.   (This use case is covered in the 

modeling for real-time data warehouse white paper referenced earlier).    

 

Figure 19: Fixed hierarchy modeled as multiple entities in Compose 

Fixed-level hierarchies can be modeled in a normalized fashion in the Compose model which supports 

flexible design patterns in the data mart layer.  

3 Level Self-Referencing (Recursive) Hierarchy  

Self-referencing relationships are recursive hierarchies where a single entity is typically involved with a 

parent-child relationship managed within said entity.   An example of this is shown in Figure 20 with an 

employee entity.   Each employee has a manager who is also an employee.    Thus the self-referencing 

relationship. 
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Figure 20: Self-referencing relationship for single level hierarchy 

If your dimensional requirement is to support up to three levels of your hierarchy (e.g. employee > 

Supervisor > Manager) and is a self-referencing relationship, this can be handled automatically by 

Compose in both the warehouse model and the data mart level.   Simply create a self-referencing 

relationship (as shown in the employees entity in Figure 20).  Compose will automatically enable two 

levels of recursion when deploying the data mart. 

Then when creating the dimension the additional levels will be available for denormalization.   

 

Figure 21: Creating a dimension with a self-referencing relationship enables two level recursion /  denormalization 

Ragged Hierarchies 

Modelling and ETL changes come into play when the relationship is recursive (beyond three levels) or 

we are managing a ragged hierarchy.   A ragged (or jagged) hierarchy is a hierarchy with an un-even 

number of levels for each branch of the hierarchy. Because many BI solutions cannot handle ragged 

hierarchies when creating dashboards and analytics we may need to standardize the hierarchy levels 

[in the data mart dimension object].    Let us consider the simple organizational hierarchy depicted 

below. 
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Figure 22: Ragged hierarchy example 

While each branch of the hierarchy has Departments, Divisions and Regions  only Region2 has 

SubRegions.   This is considered a ragged hierarchy because the hierarchy depth is different (or un-

even) for the two regions.  In our analytics, any aggregated metrics on a specific “level” in the hierarchy 

would be inconsistent.   You can see that below Level2 (Regions)  we would be mixing different 

organization levels (for example divisions and subregions in Level 3.) 

Modelling a ragged hierarchy therefore requires determining specific levels for the hierarchy and 

standardizing on those levels.   Figure 23 shows how the ragged hierarchy has been standardized to 

support 5 levels with an explicit name for each level.  

 

Figure 23: Ragged hierarchy forced into a fixed level hierarchy  

The data must be processed to accommodate the standard structure.   Note the NA-Region1 , which 

does not exist in the source and has been created as part of the ETL.    Since Region1 does not have a 

SubRegion, a “dummy entry” has been created.  While the label for this value in the hierarchy could be 
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different, the concept of rolling the Region down and creating a “subregion” is common in ensuring 

standard hierarchies.    This does 2 things for us.   It ensures that when BI solutions are looking at 

aggregates of sales or other key metrics across the organization data is aggregated at the same 

“business” grain.    It also provides a placeholder and a label to let data consumers know that a 

subregion does not exist for Region1.  

Now that we have conceptually resolved the ragged nature of the hierarchy the model can be designed 

in one of two ways.   Each level in the hierarchy can be an entity in the model with appropriate 

relationships or a single entity can be defined with appropriate attributes for each level of the hierarchy.     

Designing the model as a normalized set of entities (figure 24) where each level is its own entity 

provides more flexibility in defining dimensions as we can have a single organizational dimension, or a 

dimension defined at a specific grain of the hierarchy (for example a Region dimension).   

 

Figure 24: Compose Model with each hierarchy level as an entity 

              

Figure 25: Creating a single Organizational Dimension versus a Dimension for a specific level (Region) 

Figure 25 shows the creating a single de-normalized dimension or selecting a specific level of the 

hierarchy for more granular dimensional control.   Since organizational hierarchies do not change 

frequently these are typically (and recommended to be) loaded in batch oriented processes only (not 

using CDC) and can leverage query based sources if required to fill in the missing levels.    

Standardizing the hierarchy levels simplifies the design and ETL process and provides better anchor 

points for analysis and aggregation for consumers.  
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Merging Multiple Source Systems 

Data warehouses consolidate and harmonize data from multiple source systems.   The following will 

discuss modeling practices in Compose when using the model discovery feature.  These practices can 

be applied to any model implementation however, if you have modelled your data warehouse 

“manually” (whether outside of Compose in a data modeling tool or in Compose) then your data model 

is likely a canonical model built to support your business and merging multiple source systems is a 

matter of defining the logic in the ETL mappings. 

Data harmonization scenarios can vary, this paper will cover four common requirements for conforming 

data from multiple source systems. 

1. Union scenario -  the same data domain is managed by multiple source systems with no overlap 

in the rows.   In this scenario there are often common attributes and source specific attributes 

that should be modeled.  

2. Join scenario – the same data domain is managed by multiple source systems with discrete 

attributes being managed by each source and a common key between the sources. 

3. Mastering scenario – the same data domain is managed by multiple source systems with 

overlap in both attributes and records.   The warehouse is required to make decisions on which 

attributes to use from specific sources. 

4. Discrete domains scenario – data domains are managed by independent sources systems.  

There is no overlap within the domain, but common business keys to join / reference across 

domains. 

The last scenario - discrete data domains managed by different source systems is easy to model.  

For example sales data from an online portal and product data from a product data management 

solution.   Modeling this scenario is as simple as discovering the source tables and manually 

creating the relationships between product and sales entities on the common natural keys.        

Using model Discovery to implement the other scenarios often requires additional customizations to 

the data model.  

Modeling the Union Scenario 

A union scenario is when a single data domain comes from multiple sources with no overlap in the 

data.   There are often a set of attributes that are common between sources and a set that are unique 
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to each source system.   This is common for sources of transactional or fact data.    In our scenario 

sales data comes from multiple systems that have different structures.    There is no relationship 

between the data – each record from both sources represents a distinct sale of a product.    When this 

occurs we must create  standardized entities to manage sales data and not simply Discover each 

source.   The source system models are shown below.   

 

Figure 26: Creating a single Organizational Dimension versus a Dimension for a specific level (Region) 

While the structures are similar in this case, there are common attributes (albeit named differently such 

as Quantity and OrderQty, RequiredDate and DueDate) and there are source specific attributes / 

business concepts that do not overlap (such as TaxAmt, TerritoryID etc.).   In this case SourceA 

represents data from our brick-and-mortar store system and SourceB from a subsidiary of the business 

that sells through online channels as well as direct to consumers in stores (hence the OnlineOrderFlag 

attribute). 

When modeling this scenario in Compose (as with any data warehouse implementation), we should 

design a canonical model for sales data.  Creating a “sales header” and “sales detail” entity that houses 

the common and uncommon elements between the two sources.   We do not want to create these 

entities for each discrete source.   Since SourceB has the super-set of attributes we will discover that 

source and use it as the starting point for the model.    If you review the header tables you can see that 

most of the columns for SourceA map to columns in SourceB.  This mapping will be performed in the 

ETL mappings (as it would in most data warehouse deployments).    The changes we will make to the 

model will be to  

a) ensure the uniqueness of keys from each source 
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b) remove attributes that are not needed in the data warehouse (e.g. ModifiedDate) 

c) add attributes that exist in SourceA, but not SourceB 

d) adjust data types and attribute names if required 

Ensuring uniqueness in the natural keys for both the header and details is as simple as adding a 

SourceSystem attribute to the key.  This ensures that sales id 1 is unique for SourceA and Source. 

Business requirements dictate which attributes should be removed and added.  In our case the 

additional columns have been highlighted in the model – LayawayDate and ReferredByCustomerID for 

sales header data and SpecialOrderFlag for sales details.  These attributes can be manually added to 

the respective entities in the model (see figure 27 for the SalesOrderHeader design).     

 

Figure 27: SalesOrderHeader has had the highlighted attributes added to fit the business requirements 

Once added, the model for sales data (accommodating overlapping and source specific attributes) is 

complete.   

Merging the data is now a function of the ETL in Compose.   The ETL mappings will need to be created 

for SourceA and adjusted for SourceB to correctly map attributes, conform data values and provide 

default values where required.  For example special orders are only accommodated by our SourceA 

subsidiary.   Data mapped from SourceB will have a SpecialOrderFlag value of “N” for all records.    

While not required for our example the final step would be to adjust any data types and attribute names.   

Data types should be altered to ensure they fit the data from either source and attribute names altered 

to ensure they represent common business vernacular. 



Qlik Compose Modeling Best Practices 

 
23 

Modeling the JOIN scenario 

The simplest way to implement (and best practice for near real-time data warehousing) is to Discover 

the tables from both sources and define relationships between the discovered entities on common 

natural keys (remember to Think Hierarchically in the creation of your relationships).  This retains a 

normalized structure for real-time processing (refer to the Modeling for Real-Time Data Warehousing 

section of this white paper). 

For example – given a Customers entity from one source system and demographic data from our 

marketing department we can simply create a relationship in the model and allow Compose to handle 

either de-normalizing the structures into a single dimension or managing each as independent 

dimensions based on consumer requirements.   Figure 28 shows the discovered entities.    

 

Figure 28: customers from SourceA and customer demographic tables (highlighted) from the marketing 

department 

The relationship between customers and CustomerDemographics was manually added to support 

joining these entities into a single Customers dimension (if required). 

This method adds entities to the main warehouse model but enables the most automation in model 

design and ETL mapping generation.    Another method to implement would be to model the customers 

entity with all the required attributes.  Demographic attributes would need to be manually added to the 

discovered customers entity (figure 28).  
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Figure 29: customers entity with demographic attributes (highlighted) added 

With the model defined, the ETL mappings would manage the transformation requirements to load the 

data warehouse.   Qlik Compose provides multiple features to manage these joins (source queries, 

lookups, or  partial mappings).  These concepts are not covered in this white paper.    

Modeling the Mastering scenario 

Qlik Compose is not a master data management solution.   However, data warehouses often have to 

manage data that overlaps from multiple source system and implement simple, rule based decisions on 

which source attribute should be used for analytics.   These rules are typically as simple as “if SourceA 

has a value for attribute use it, else use SourceB’s value”.   Often times these are soft business rules 

which may change over time.    For this scenario, the vault concepts used by Compose for the 

warehouse layer can provide flexibility to managing the attributes and changing soft business rules.   

We will cover two solutions with an example scenario where customer data is provided by multiple 

source systems.     

Review the source table structures shown in figure 30.  
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Figure 30: Customer entities in two source systems 

In this case there is overlap of customer information between the two systems.  E.g.  John Doe’s 

customer information is available in both sourceA and sourceB while Jane Doe only exists in sourceA.   

When conforming data in this fashion we have to ensure we have a common value that can be used as 

the unique or natural key for the model that can cross-reference the two sources.    

In this case the primary key for each system is obviously different with sourceA having nvarchar(5) and 

sourceB having integer columns.    Notice that sourceB also has a CustomerID field with a varchar 

datatype.  This represents the CustomerID primary key field in sourceA and is the value that enables 

cross-referencing the two systems.  This may not always be available, and you may have a scenario 

where a cross-reference table manages the relationship between the two sources.   Either way, the 

ability to link records from both systems is a requirement.   (Note that this ability to link records is often 

the purpose of a master data management or data quality solution in the context of the data 

warehouse.   This is out of scope for core Qlik Compose functionality however Qlik Compose could 

orchestrate these external processes or additional custom code as part of the end to end data 

processing requirements for cross-reference creation and data harmonization). 

Since there is overlap in the data, but not all customers from sourceA exist in sourceB this is not a case 

of discovering the entities and applying relationships.   Instead, we will discover sourceA and create 

duplicate attributes for source.   Recall that Compose converts the logical model into HUB and 

SATELLITE tables to manage business keys and type 2 attributes.    When duplicating logical attributes 

for each source we will also designate that the data is managed in different SATELLITES so that the 

type 2 nature of data is managed by each source system.  For this example we will focus a few 

customer attributes – CompanyName  and ContactName.  
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Figure 31: Attributes defined for each source system, managed in different Satellites 

Figure 31 shows the customers entity.  Attributes CompanyName (BusinessName column in source) 

and ContactName (a concatenation of FirstName and LastName from source) have been created for 

each source.   Note the satellite is different for each.  This design will result in the physical tables 

shown in figure 32.    Since this example only focuses on a few columns it may not be necessary to 

implement multiple satellites.  However in real-world scenarios you would be managing more attributes 

than this and separating into multiple satellites reduces storage requirements as changes are managed 

across the sources. 

 

Figure 32: Physical tables (1 HUB and 2 satellites) are defined by Compose from the logical model 

The model now manages each source within a single logical entity.   The soft business rules (which can 

change over time) can now be managed in the data mart layer in Compose using the expression 

builder.   For example the below shows the expression to leverage the CompanyName from sourceB if 

it exists, but the ContactName from sourceA using a simple isnull expression. 
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Figure 33: Dimension applying soft business rules 

This solution requires a common identifier between the two customer source tables.   As mentioned 

earlier, it is common for a cross-reference to be used to manage these relationships if the data is not 

readily available in the source.    When using a cross-reference table the lookup can be performed 

within the ETL to resolve the CustomerID and CustomerKey to a common identifier or it can be 

modeled.  

 

Figure 34: A cross-reference table managing relationships between the customer tables 

Figure 34 shows the model using a cross-reference entity (CustomerXRef).   The orders entity has 

been left in the image to depict how other tables should be related to the customer tables.   All the 

relationships should be assigned to the CustomerXRef entity as that allows the customer dimension to 

be built using the CustomerXRef as the root of the dimension.   (Enforcing dimension granularity and 

again, Thinking Hierarchically).  Defining and loading this entity is commonly performed by retrieving 

data from a master data management or data quality solution that performs fuzzy matching and 

merging or by a query based Compose mapping when fuzzy matching is not required.  

While we have covered four of the common scenarios in modeling data from multiple source systems, 

there are other scenarios when merging data from multiple systems.   In these instances the general 

idea is to model the logical entities to fit your business and leverage ETL features in Compose to 

handle the processing of the data 
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Reserved Words to Avoid in the Model 

Qlik Compose converts your logical model to physical structures using components of the data vault 

pattern.   Compose also added specific columns for surrogate keys and for operational metadata.    

Compose has a set of reserved words that should not be used for attributes these are –  

• ID – the surrogate column managed by Compose. 

• RUNNO_INSERT – the ETL run number that inserted the record 

• RUNNO_UPDATE – the ETL run number that updated the record 

• FD – the from date for Type 2 records.  The name of this column can be altered in Project 

settings based on your requirements (e.g. FROM_DATE, EFF_DT, EFFECTIVE_DATE etc.).   

The name you enter in the project settings will become “reserved”.  

• TD – the to date for Type 2 records.  The name of this column can be altered in project settings 

based on your requirements (e.g. TO_DATE, END_DATE etc.).  The name you enter in the 

project settings will become “reserved”. 

Additional Content 

This white paper focuses on specific modeling scenarios with Qlik Compose data warehouse projects 

and some general best practices to enable automation throughout the warehouse design and ETL 

automation process.   There is additional content for Qlik Compose covering different aspects of the 

solution from deeper dives into specific modeling and ETL use cases to handling deletes and much 

more.  These are available on the Qlik Community Qlik for Data Warehouses pages that can be found 

in the Documents and Video section. 

Conclusion 

Qlik’s data warehouse automation provides capabilities to manage the data warehouse lifecycle. 

Modeling of the data warehouse is a critical step in understanding your business requirements and 

enabling ETL and data mart automation.   This paper has covered some general best practices  and 

some specific scenarios (merging data from multiple sources) to leverage the most out of Qlik 

Composes automation features for managing the data warehouse and the data mart.    The general 

principles of defining the data model are to model the entities to support your business and data 

https://community.qlik.com/t5/Qlik-Compose-for-Data-Warehouses-Documents/tkb-p/qlik-compose-warehouses-documents
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warehouse requirements while following the principles detailed herein.      The approaches described in 

this paper explain how to think hierarchically when building the data model in Compose and how to 

handle common modeling scenarios as you migrate from an operational to analytics model.     

 

 

 

 

© 2020 QlikTech International AB. All rights reserved. All company and/or product names may be trade names, trademarks and/or registered trademarks of the respective owners with which 
they are associated. 

About Qlik 

Qlik’s vision is a data-literate world, one where everyone can use data to improve decision-
making and solve their most challenging problems. Only Qlik offers end-to-end, real-time data 
integration and analytics solutions that help organizations access and transform all their data 
into value. Qlik helps companies lead with data to see more deeply into customer behavior, 
reinvent business processes, discover new revenue streams, and balance risk and reward. 
Qlik does business in more than 100 countries and serves over 50,000 customers around the 
world. qlik.com 


