
Q L I K . C O M

W H I T E P A P E R

Automating
Compose
Deployments
Best Practices for Compose for Data Warehouses

Automating Compose Deployments

1

T A B L E O F C O N T E N T S

Summary 2

Introduction 2

Standard Compose Deployment 3

Deployment Automation 4

CI/CD Pipeline 5

Conclusion 11

Automating Compose Deployments

2

S U M M A R Y

• Compose deployment allows the migration of a Compose project to other environments in support

of Development, Test, Acceptance and Production (DTAP).

• Compose provides two methods for deploying projects. One is the UI based method for user

interactive migration. The other is the Command Line Interface (CLI) method for scripted and

automated migration

• This paper will explore using the CLI interface and related artifacts to build an automated pipeline

for Compose deployments in a Continuous Integration/Continuous Delivery (CI/CD) fashion

I N T R O D U C T I O N

Agility is becoming a foundational aspect of data management

implementations. This requires the implementation process to incorporate

DataOps concepts to seamlessly move data products from design to

operations. Key to DataOps is the ability to establish a CI/CD pipeline to

promote finished data products.

Deployment automation is at the heart of any CI/CD pipeline. Qlik

Compose supports deployment automation via its Command Line

Interface (CLI) and project metadata JSON file.

In this paper we will demonstrate the use of the Qlik Compose CLI

commands, project metadata JSON file, Power Shell scripting, and

Jenkins CI/CD tool to automate the deployment of projects.

Automating Compose Deployments

3

Standard Compose Deployment

The standard Compose deployment uses the UI to export (Create Deployment Package) the project

from the source environment and import this project (Deploy) into the target environment. This process

is shown below.

In addition, after deploying the project to the target environment the user must perform the following

manual steps

• Update the Database connections (if initial deployment into target environment)

• Validate the model

• Create (if initial deployment) or adjust (on subsequent deployments) the data warehouse tables

• Generate task instructions, one by one, for all data warehouse tasks

• Create or adjust Data mart(s)

• Generate the tasks for all data marts

The process outlined requires many manual steps that if executed in this fashion over time present

increasing opportunities for error. Deployment automation takes these steps and places them in an

automated flow significantly reducing the effort and input needed into the process

Automating Compose Deployments

4

Deployment Automation

Automating the Compose deployment requires usage of three components. These are the Compose

Command Line Interface (CLI), scripting for processing externalized environment specific variables

(PowerShell), and a build automation tool (Jenkins) to manage the deployment. We will first outline the

functions performed by each of the components and then provide a sample flow using them.

Compose CLI

The Compose CLI provides three key commands we need to build

as building blocks to our deployment automation:

1. Connect - establishes a connection to the Qlik Compose Server.

Must be run before running any other command.

2. Export Project – exports the project to a JSON file.

3. Import Project – imports the JSON file to am existing Compose

project. Creates the project in the process if it doesn’t exist

PowerShell

Between the export project and import project step we need to edit

the JSON file of the project to replace environment variables the differ between environments. Among

these we have:

1. Host – server name and port for the target environment

2. Database names

3. Credentials – Username & Password

Command Notes

Export and import commands

should be run locally in the

Compose server host. Shared

drives between servers are

recommend for transferring of

project export.

Export project uses the

is_without_credentials option to

not populate password fields. The

build process needs to populate

these with the ones corresponding

to the target environment

Import project uses the

override_configuration to have

Compose accept the externalized

variables for the environment

For additional information refer to

the Compose online user guide at

help.qlik.com

Automating Compose Deployments

5

4. Schemas - Data Warehouse, Data Mart, and landing schemas

We will use a Power Shell script to update the values for these parameters with the ones

corresponding to the target deployment environment. PowerShell provides two key built-in

functions for this process: JSON processing (ConvertFrom-Json, ConvertTo-Json) and CSV

file processing for environment variables (Import-Csv)

Build automation tool

A build automation tool is needed to serve as the orchestrator for the deployment process. It can be

configured to build on demand, on schedule, or by other specified triggers such as a commit to a git

repository. In this White Paper, we’ll use Jenkins for build automation.

CI/CD Pipeline

End-to-end deployment automation flow

The following flow diagram illustrates the steps and sequence of execution for the automated

deployment flow

Automating Compose Deployments

6

The steps are as follows:

1. Jenkins triggers the deployment script

2. Deployment script calls Compose CLI in source environment to export project

3. Compose CLI process generates project metadata JSON file

4. Deployment script reads configuration CSV file for target environment

5. Deployment script applies changes for project metadata JSON file

6. Deployment script call Compose CLI to read updated project JSON file in target environment

7. Compose CLI read in project JSON file, applies it, and validates, adjusts, and generates tasks

We will now detail the CI/CD pipeline by putting the automation concepts to work. First, we need to

define a parameter file for the target environment. The file is defined as follows:

Config file format

name server_name database_name user_name password included_schemas dma_schema port

Data

Warehouse

Db.host.com DW_DB Compose Password DW DM 1234

Sales Src Db.host.com * 0

Sales

Src_Landing

Db.host.com SRC_DB Source Password Landing Landing 1234

Notice the name field must match the name of the databases defined in the Compose project. The key

databases for higher environment are the Data Warehouse and those with _Landing in the name. The

others are blanked out because they are only used for metadata at design phase.

Script

Automating Compose Deployments

7

We now illustrate the key sections of the PowerShell script. First the connect and export commands to

connect to the Compose server and fetch the project as a JSON file

$connectProc = Start-Process -NoNewWindow -FilePath $composeCLIPath -ArgumentList "connect"
-PassThru -Wait
if ($connectProc.ExitCode -ne 0) {
 exit $connectProc.ExitCode
}

$exportProc = Start-Process -NoNewWindow -FilePath $composeCLIPath -ArgumentList
"export_project_repository --project ""$projectToExport"" --outfile=""$file"" --
is_without_credentials" -PassThru -Wait
if ($exportProc.ExitCode -ne 0) {
 exit $exportProc.ExitCode
}

Once executed, these commands fetch the JSON export for the source environment project. We then

need to use the defined parameters file to replace the corresponding parameters in the JSON file. The

following snippet reads the CSV file. Note that this command by default uses the first row of the CSV

as header and allows addressing the values in the columns by the names in the header.

[string]$InputTableListCSVFile=$csvfile
$InputTableListCSV = Import-Csv -Path $InputTableListCSVFile

Once we have the CSV loaded, we can use the following command to read the exported project JSON.

$jTree = Get-Content -Raw -Path $file|ConvertFrom-Json

This command reads the entire JSON document with the Compose project metadata and instantiates a

corresponding document tree object in memory. Since our focus for deployment are those items that

change across environments, namely the databases section, this is what we’ll read and modify.

However, note the same method could be used to change other aspects of the project

programmatically.

The following snippet reads and takes stock of the databases for the project.

$databases = $jTree.objects|where type -EQ "Database"
$databaseHash = @{ }
foreach($database in $databases) {
 $databaseHash.Add($database.name, $database)
 $database.inner_item.name
}

Automating Compose Deployments

8

The next step is to iterate through the list of databases present in the configuration file and update the

corresponding database in the project metadata JSON. Since we are using the CSV configuration to

drive the project update, only those databases included in the file will be modified. The following

snippet updates the configuration:

foreach ($line in $InputTableListCSV) {
 $databaseHash.Item($line.name).inner_item.server_name = $line.server_name
 $databaseHash.Item($line.name).inner_item.database_name = $line.database_name
 $databaseHash.Item($line.name).inner_item.user_name = $line.user_name
 $databaseHash.Item($line.name).inner_item.password = $line.password
 $databaseHash.Item($line.name).inner_item.included_schemas = $line.included_schemas
 $databaseHash.Item($line.name).inner_item.dma_schema = $line.dma_schema
 $databaseHash.Item($line.name).inner_item.port = $line.port
}

Once the changes are made to the project metadata, the last step is to create a new JSON with the

updates and to invoke Compose import project command to deploy it. Note that this example is using

the same Compose server for both environments (source of migration and target of migration). It would

need to be modified to accommodate for different environments for source and target.

First write the new file:

$new_json_string = ConvertTo-Json $jTree -depth 99
$newFile = $file.Replace('.json','_UPDATED.json')
$new_json_string|Out-File -FilePath $newFile

Then call Compose to import the project.

$importProc = Start-Process -NoNewWindow -FilePath $composeCLIPath -ArgumentList
"import_project_repository --project ""$projectToImport"" --infile=""$newfile"" --
override_configuration --autogen" -PassThru -Wait

The import command due to the –autogen parameter is going to execute all the steps outlined in the

standard deployment section of this document automatically. The one caveat to keep in mind is that

any warehouse changes that require manual execution of a SQL script would make the import

command fail at that step and require the use to manually complete the script and remaining steps. IT

is advisable to execute any such changes in advance of calling the deployment command to have this

process complete without manual intervention.

Automating Compose Deployments

9

Deployment automation with Jenkins

The orchestration of the deployment script is best managed using an automation server. For this

exercise we will utilize the Jenkins open-source tool, however any similar purpose tool would work. The

process will use a simple same server for build automation and Compose. In most cases the user will

need to use a distributed build where the automation server and Compose, potentially both source and

target of deployment are all in separate hosts. The particulars of that distributed build configuration are

beyond the scope of this paper.

 The basic steps to setup the Compose deployment on Jenkins are as follows:

1. Create a new item of type: Freestyle project

2. Add build step of type: Execute Windows batch command

3. Inside the command text box, paste the command to run the PowerShell script to execute the

deployment. E.g.

powershell -ExecutionPolicy Unrestricted C:\code\powershell_samples\C4DW_Migrate_Project.ps1
DW_DEV2 DW_TEST C:\temp\testscript C:\DevTools\Qlik\Compose\bin
C:\temp\ComposeConfig_values_%Environment%.csv

Note that in this case, we are using a build parameter for the environment to build to, using the

parameterized project option

Automating Compose Deployments

10

Similarly additional parameters could be added and passed to the script.

4. Add a trigger (optional) to have the build run on a schedule or using a GitHub hook trigger, if

Compose is configured for remote commits, to have the build automatically triggered after a

push.

Conclusion

Qlik Compose has built-in support for a CI/CD pipeline leveraging deployment automation via it’s

command line interface (CLI). We have demonstrated how to create this pipeline using the following

components:

 ComposeCLI PowerShell Jenkins CSV configuration file

What It is Programmatic interface to
execute Compose
commands

Scripting language Build automation tool Text file with comma
separated values

Role
Project metadata export
and import using a JSON
file

Provides native
facilities to handle
JSON, CSV, and
Windows commands
needed to process the
deployment

Orchestrates the
automated build

Externalizes environment
specific parameters

Organizations can leverage this method to integrate Compose deployments into their DataOps

environments in an automated fashion in support of their CI/CD pipeline.

© 2021 QlikTech International AB. All rights reserved. All company and/or product names may be trade names, trademarks and/or registered trademarks of the respective owners with which
they are associated.

About Qlik

Qlik’s vision is a data-literate world, one where everyone can use data to improve decision-
making and solve their most challenging problems. Only Qlik offers end-to-end, real-time data
integration and analytics solutions that help organizations access and transform all their data
into value. Qlik helps companies lead with data to see more deeply into customer behavior,
reinvent business processes, discover new revenue streams, and balance risk and reward.
Qlik does business in more than 100 countries and serves over 50,000 customers around the
world.

qlik.com

