
Q L I K . C O M

W H I T E P A P E R

Layering the Qlik Data
Integration Architecture
with Compose Projects
Best Practices for Compose for Data Warehouses

 Layering the Qlik Data Integration Architecture with Compose Projects

1

T A B L E O F C O N T E N T S

Summary 2

Introduction 2

Architecture use cases 3

Qlik Compose ETL Tasks 6

Primary/Secondary Data Warehouse Implementation 8

Subject Area/Generalized Data Warehouse implementation 11

Conclusion 15

Appendix - DDL/DML SQL and Mapping code 16

 Layering the Qlik Data Integration Architecture with Compose Projects

2

S U M M A R Y

• In most Data Warehouse implementation scenarios, a standard QDI configuration having a single

product Compose Data Warehouse project is sufficient for a complete solution.

• In some instances, layering the architecture by chaining Compose projects can provide additional

flexibility by breaking down areas of the implementation supported by chaining of Primary and

Secondary Data Warehouses.

• The additional flexibility needs to be carefully weighed against additional implementation

customizations.

I N T R O D U C T I O N

The Qlik Data Integration pipeline is powerful yet easy to implement to

enable a complete Data Warehouse solution with minimal customization.

The automation, both Replicate for data movement and Compose for

data transformation to an analytics ready presentation layer, simplifies

the tasks and effort require to deploy and operate the Data Warehouse

environment.

In addition, Compose projects themselves can be further linked or

chained to achieve enhanced flexibility of the resulting pipeline. This

would be the case if for example we are looking to implement a super set

Primary Data Warehouse (akin to a relational data lake) as first step with

a Secondary Data Warehouse using a subset of the Primary as the

second step. Another example would be implementing a subject area

specific Data Warehouse, with very granular level of detail about its

respective area, as a first step and Secondary DW that consolidates

 Layering the Qlik Data Integration Architecture with Compose Projects

3

multiple subject area specific Data Warehouses at a higher level with less

detail per subject. This flexibility requires task customizations and tighter

dependencies between Compose projects and should be carefully

evaluated against the status quo option of a single Compose project.

This paper will describe the considerations needed to implement the

scenarios specified and how layering the architecture using multiple

Compose projects solves for each of them.

Architecture Use Cases

A standard Qlik Compose project manages a single Data Warehouse as depicted below

In this scenario, Replicate acts as a feeder into the Landing Area of the Data Warehouse with Compose

model and mappings populating the warehouse (AKA vault) table and ultimately the Data Mart tables.

In most cases this architecture suffices and it’s the preferred approach to implementing the

requirements of the Data Warehouse. Particularly if we need to both minimize the amount of

customization and effort to deploy as well as optimize for near real time needs.

 Layering the Qlik Data Integration Architecture with Compose Projects

4

Primary Data Warehouse/Relational Data Lake

There are use cases however that require additional layers in the architecture to implement. The first of

these is the super set Primary Data Warehouse, A.K.A Relational Data Lake. The logical architecture

is depicted below.

Figure 1 – Relational Data Lake Architecture

In this use case, we treat the Primary Data Warehouse, managed

by the first Compose project, as a raw data area or zone. The

Primary Data Warehouse just stores detailed data and potentially all

its history but may not at this point have defined relationships

between entities or even know appropriate dimensional

representation for them. The Secondary Data Warehouse and

project(s) would implement a more refined model utilizing a subset

of the data in the Primary and defining appropriate relationships

between entities to be leveraged by the resulting Data Mart in this

project.

Benefits

One of the main benefits of this

architectural option is the ability

to defer modeling decisions to a

later point while immediately

capturing relevant data and

history. It allows for quicker

onboarding of data in the Data

Warehouse and to create

separate raw and refined zones.

 Layering the Qlik Data Integration Architecture with Compose Projects

5

Subject Area/Generalized Data Warehouse

The second use case for this layering architecture allows for implementing detailed subject area

specific Data Warehouse(s) then consumed by a generalized Data Warehouse. The logical

architecture is depicted below.

Figure 2 - Subject Area Data Warehouse Architecture

 In this instance the subject area Data Warehouse and

corresponding Compose project might contain highly normalized

models for each subject area with higher level denormalized

structure implemented as dimensions in the Data Mart for the

subject area project. The generalized Data Warehouse and

Compose project then implement a model where the data mart

dimensions of the subject area become the entities of the general

model with additional relationships across subject areas specified in

it. For instance, large manufacturing firms could create an inventory

and materials subject area warehouse to manage all the details

related to products that themselves contain thousands for

components while also having dedicated subject area warehouses for other functions such as Human

Resources, Finance, etc. with similar level of detail. Each of these Subject Area Data Warehouses

would generate a Data Mart with refined dimensions that contain only the detail needed at the cross-

subject area view of the enterprise that would be consumed by the General Data Warehouse for higher

level analytics/

Benefits

One of the main benefits of this

architectural option is the ability to

specialize complex subject area

processing and details containing

hundreds of entities and

relationships and offering this

detail to those that need it while

also offering a cross subject area

view of the enterprise with less

detail and broader view of the

enterprise.

 Layering the Qlik Data Integration Architecture with Compose Projects

6

Architectural considerations

Both options discussed tradeoff increased flexibility for increased implementation complexity, explained

in detail in the next section, and potential runtime latency, due to having lag between Primary and

dependent project execution. Implementors should carefully weigh these and consider the standard

implementation (one Compose project/Data Warehouse) as the default recommendation.

Qlik Compose ETL Tasks

A traditional Compose project relies on two different types of ETL tasks for ingesting data. These are

known as full load tasks and CDC tasks. ETL Tasks are a collection of mappings that run together.

The task type defines data source and processing characteristics within Compose and impacts how

Compose automates the Extract, Load and Transform (ELT) code. A comparison of the two task types

is defined in the table below.

 Full Load Task CDC Task

What It Does Processes a full data set, comparing it to the data
warehouse. The task detects new and changed records,
processing them based on the model’s characteristics
(type 1 and type 2 attributes)

Leverages Replicates STORE CHANGES option and uses
the change tracking (__CT) tables to only process new
changes instead of the full data set. This task still
compares the changed records to the data warehouse to
ensure the change is applicable to the data warehouse
model.

When To
Use It

• Initial load of the data warehouse

• End of day or batch based processes that require
processing a complete dataset

• Mappings using query or views as a source

• Custom Incremental load processes

• CDC based processing for Replicate data sources

• Intra-day / near real-time data loads

• Batch data loads driven from CDC delivered data

Limitations • Out of the box workload processes the complete table /
view / query result set

• Not applicable for mappings using a query or view as the
source

Data Source • Table (full load for Replicate delivered data)

• Queries

• Views

• Change Tracking tables (Compose appends __CT to the
mappings defined source

In either of the layering use cases, the Compose project(s) in the first layer would utilize either of these

two task types to load and manage data. The Compose project(s) on the second layer however will

utilize a customized Full Load Task mappings to load data from first layer project(s) Data Warehouse

Hub/Satellite or Data Mart dimension tables. These customized mappings must contain additional

processing criteria to pick up incremental changes to tables in the Primary or Subject area warehouse.

Custom Change Detection

Qlik Compose generates two types of structures in its data warehouse (vault) area, Hubs, which

contain business keys and type 1 attributes, and Satellites which contain type 2 attributes and

 Layering the Qlik Data Integration Architecture with Compose Projects

7

corresponding effective dates (FromDate and ToDate). In the Data Mart sections, dimensions can be

configured to be type 1 or type 2. Any of these table structures contains process columns, maintained

by Compose, that tag or assign to each record the individual Compose run number (RUNNO) that

inserted or update the record (RUNNO_INSERT) and (RUNNO_UPDATE). Examples of these are

depicted below.

Both architectural approaches leverage the RUNNO_UPDATE

columns for use by the chained or dependent projects to process

only new or changed records into the corresponding warehouse.

Processing changes in dependent/chained warehouse

A control table, housed within the dependent/chained project

warehouse tables is needed to maintain the state with respect to

processed changes. This method maintains the last processed

RUNNO, and the source projects max completed RUNNO in a table

which is then used in mapping filters to ensure the

dependent/chained project only processes new or changed records.

Pre-Load ETL and Post-Load ETL steps are implemented to track

the processed and source max values for RUNNO along with a filter

for each query / table being processed. The control table can have

multiple records to segment ETL processing in dependent/chained

project if required.

Below is an example control/tracking table to manage the RUNNO

CONFIG_NAME PROCESSED_RUNNO SRC_MAX_RUNNO

SRC1_ETLSET1 2 4

SRC2_ETLSET1 3 4

CONFIG_NAME column provides a method of managing multiple

RUNNO’s in the event multiple landing areas are used to source

Project2 entities.

Asdasd

Compose Tables

Hub

Satellite

Dimension

 Layering the Qlik Data Integration Architecture with Compose Projects

8

PROCESSED_RUNNO – the max RUNNO that has been processed by dependent/chained project

SRC_MAX_RUNNO – the max RUNNO that the source project has completed processing

Within a Compose project, the ETL RUNNO are managed in the logging table TPIL_RUNS. This table in

the Primary project can be used to determine the last completed RUNNO in the source project and

update the control table in the Secondary/dependent project.

Primary/Secondary Data Warehouse Implementation

The premise of this sample implementation is a Primary Data Warehouse that contains our relational

lake. It takes one such entity in the relational lake and uses its data including history as a foundation

for the entity in the Dependent Data Warehouse.

1. Configure Compose project for Primary Data Warehouse as usual with only a Data Warehouse

layer and standard table based Full/Bulk Load and CDC tasks that load from Replicate landing

area.

2. Setup the dependent/chained project landing area database(s) with a Full Load Only source

connection to the Primary project DW database.

3. Setup the dependent/chained project Model with the entities that will be sourced from the Primary

project

 Layering the Qlik Data Integration Architecture with Compose Projects

9

4. Create a Pre-Load ETL step to update a control table record and set the SRC_MAX_RUNNO

Note: EXITCODE = 0 ensures we only select the highest successful RUNNO and STOP_AT not NULL

ensures we don’t pick up a run in-progress.

5. Design a query-based mapping to load the dependent project entities from the Primary Data

Warehouse.

 Layering the Qlik Data Integration Architecture with Compose Projects

10

Each of these mappings will have a filter to only processed data that has changed Primary DW since

the last RUNNO that the dependent DW processed.

Note: This example shows the common scenario of retrieving type 1 data from the Hub table and type 2

data from Satellite 1. The condition to select the RUNNO requires an OR because there could be

change in either Hub or Satellite(s) that need to be processed. This OR is not needed if there’s only

Hub table data to process.

6. Enable the Mapping

 Layering the Qlik Data Integration Architecture with Compose Projects

11

Note: Handle duplicates is only needed if were processing a type 2 data from the Primary Data

Warehouse.

7. Create a Post Loading ETL step to update the control table record and set the

PROCESSED_RUNNO to the SRC_MAX_RUNNO being used in the current run.

If data needs to be reprocessed for a specific ETL Task / source, then the control table can always be

updated manually so the PROCESSED_RUNNO is set back to a prior value.

8. The entity is now ready to be used in the Secondary data warehouse. The same process would be

repeated for subsequent entities that need to be source from the Primary relational lake warehouse

into the dependent warehouse

Subject Area/Generalized Data Warehouse Implementation

The premise for this sample implementation is a detailed Subject Area Warehouse for products from

which a higher-level product dimension is built and then used as standalone entity in the Generalized

Data Warehouse.

1. Configure Compose project for Subject Area Warehouse with the normalized model for the subject

area, a Data Warehouse layer and a Data Mart with the dimension(s) that will be used by the

Generalized Data Warehouse

 Layering the Qlik Data Integration Architecture with Compose Projects

12

2. Setup the Generalized Data Warehouse project database(s) with a Full Load Only source

connection to the Subject Area project Data Mart database.

3. Discover the entity(ies) from the Subject Area Database. Rename the entity as needed and replace

the business key to be the natural key of the entity instead of the OID/VID key from the dimension.

For clarity it is recommended to delete these along with the Compose process columns

 Layering the Qlik Data Integration Architecture with Compose Projects

13

4. Create a Pre-Load ETL step to update a control table record and set the SRC_MAX_RUNNO

Note: EXITCODE = 0 ensures we only select the highest successful RUNNO and STOP_AT not NULL

ensures we don’t pick up a run in-progress.

5. Design a table-based mapping to load the dependent project entities from the Subject Area Data

Warehouse.

 Layering the Qlik Data Integration Architecture with Compose Projects

14

Each of these mappings will have a filter to only processed data that has changed in the Subject Area

DM since the last RUNNO that the dependent DM processed.

Note: In this example, the From Date (FD) is mapped to the From Date of the dimension record. This is

only needed if the original dimension is type 2.

6. Enable the Mapping

Note: Handle duplicates is only needed if were processing a type 2 data from the Subject Area Data

Warehouse.

7. Create a Post Loading ETL step to update the control table record and set the

PROCESSED_RUNNO to the SRC_MAX_RUNNO being used in the current run.

 Layering the Qlik Data Integration Architecture with Compose Projects

15

If data needs to be reprocessed for a specific ETL Task / source, then the control table can always be

updated manually so the PROCESSED_RUNNO is set back to a prior value.

8. The entity is now ready to be used in the generalized data warehouse. The same process would be

repeated for other subject areas and entities needed in the generalized warehouse

Conclusion

Qlik Data Integration standard pipeline using Replicate and Compose provides end to end automation

for most data warehouse implementations. Specialized use cases such as the Relational Data Lake or

Subject Area/Generalized Data Warehouse can be implemented with additional layering of multiple

Compose projects. Implementation requires knowledge and use of more advanced Compose features

along with custom steps to ensure change processing into the Secondary Compose managed

warehouse. The flexibility and customization potential of Qlik Compose provides a path to implement

these complex use cases.

About Qlik

Qlik’s vision is a data-literate world, one where everyone can use data to improve decision-
making and solve their most challenging problems. Only Qlik offers end-to-end, real-time data
integration and analytics solutions that help organizations access and transform all their data
into value. Qlik helps companies lead with data to see more deeply into customer behavior,
reinvent business processes, discover new revenue streams, and balance risk and reward.
Qlik does business in more than 100 countries and serves over 50,000 customers around the
world.

qlik.com

 Layering the Qlik Data Integration Architecture with Compose Projects

16

Appendix – DDL/DML SQL and Mapping code used

/****** Object: Table [dbo].[DW.CMPS_CHAIN_CONFIG] Control Table DDL ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [DW].[CMPS_CHAIN_CONFIG](

 [CONFIG_NAME] [varchar](255) NOT NULL,

 [PROCESSED_RUNNO] [int] NOT NULL,
 [SRC_MAX_RUNNO] [int] NOT NULL

) ON [PRIMARY]

GO

ALTER TABLE [DW].[CMPS_CHAIN_CONFIG] ADD CONSTRAINT [DF_CMPS_CHAIN_CONFIG_PROCESSED_RUNNO]

DEFAULT ((0)) FOR [PROCESSED_RUNNO]

GO

ALTER TABLE [DW].[CMPS_CHAIN_CONFIG] ADD CONSTRAINT [DF_CMPS_CHAIN_CONFIG_SRC_MAX_RUNNO]

DEFAULT ((0)) FOR [SRC_MAX_RUNNO]
GO

/****** Primary/Secondary Data Warehouse SQL code ******/
/****** Pre Load ETL ******/

UPDATE [DEP_DW].[CMPS_CHAIN_CONFIG]

SET [SRC_MAX_RUNNO] = (SELECT MAX([RUNNO])

 FROM [DW].[TPIL_RUNS]
 WHERE EXITCODE = 0 AND STOP_AT is not NULL)

WHERE [CONFIG_NAME] = 'SALES_NW'

/****** Query to retrieve Hub and Sattellite data from Primary DW ******/

SELECT

 [E1].[CategoryID]
, [E2].FD

, [E2].[Picture]

, [E2].[CategoryName]
, [E2].[Description]

FROM [SALES_DW].[DW].[TDWH_categories_HUB] [E1]

INNER JOIN [SALES_DW].[DW].[TDWH_categories_S01] [E2]

 ON [E1].[ID] = [E2].[ID]
WHERE [E2].[FD] < [E2].[TD]

 AND (([E1].[RUNNO_UPDATE] > (SELECT PROCESSED_RUNNO FROM

[DEP_DW].[CMPS_CHAIN_CONFIG] WHERE [CONFIG_NAME] = 'SALES_NW') AND [E1].[RUNNO_UPDATE] <=
(SELECT SRC_MAX_RUNNO FROM [DEP_DW].[CMPS_CHAIN_CONFIG] WHERE [CONFIG_NAME] = 'SALES_NW'))

 OR ([E2].[RUNNO_UPDATE] > (SELECT PROCESSED_RUNNO FROM

[DEP_DW].[CMPS_CHAIN_CONFIG] WHERE [CONFIG_NAME] = 'SALES_NW') AND [E2].[RUNNO_UPDATE] <=
(SELECT SRC_MAX_RUNNO FROM [DEP_DW].[CMPS_CHAIN_CONFIG] WHERE [CONFIG_NAME] = 'SALES_NW')))

 AND [E1].[ID] > 0

/****** Post Load ETL ******/
UPDATE [DEP_DW].[CMPS_CHAIN_CONFIG]

SET [PROCESSED_RUNNO] = [SRC_MAX_RUNNO]

WHERE [SOURCE_NAME] = 'SALES_NW'

 Layering the Qlik Data Integration Architecture with Compose Projects

17

/****** Subject Area/Generalized Warehouse SQL code ******/
/****** Pre Load ETL ******/

UPDATE [DW].[CMPS_CHAIN_CONFIG]

SET [SRC_MAX_RUNNO] = (SELECT MAX([RUNNO])
 FROM [AdventureDW].[DW].[TPIL_RUNS]

 WHERE EXITCODE = 0 AND STOP_AT is not NULL)

WHERE [CONFIG_NAME] = 'PRODUCT_DW'

/****** Table Mapping Filter to retrieve Subject Area Data Mart data ******/

${Product_RUNNO_UPDATE} > (SELECT PROCESSED_RUNNO FROM [DW].[CMPS_CHAIN_CONFIG] WHERE

[CONFIG_NAME] = 'PRODUCT_DW')
AND

${Product_RUNNO_UPDATE} <= (SELECT SRC_MAX_RUNNO FROM [DW].[CMPS_CHAIN_CONFIG] WHERE

[CONFIG_NAME] = 'PRODUCT_DW')
AND ${Product_OID} > 0 AND$ {OBSOLETE__INDICATION} = 0

/****** Post Load ETL ******/

UPDATE [DW].[CMPS_CHAIN_CONFIG]
SET [PROCESSED_RUNNO] = [SRC_MAX_RUNNO]

WHERE [CONFIG_NAME] = 'PRODUCT_DW'

© 2021 QlikTech International AB. All rights reserved. All company and/or product names may be trade names, trademarks and/or registered trademarks of the respective owners with which
they are associated.

