

Automation Interface Reference

2012-10-22

 - 2 -

Version 11.2 for Microsoft Windows
®
.

Lund, Sweden, October 2012

Authored by QlikTech International AB

 - 3 -

Copyright © 1999-2012 QlikTech International AB, Sweden.

Under international copyright laws, neither the documentation nor the software may be

copied, photocopied, reproduced, translated or reduced to any electronic medium or

machine-readable form, in whole or in part, without the prior written permission of QlikTech

International AB, except in the manner described in the software agreement.

QlikView® is a registered trademark of QlikTech International AB. In the United States of

America and Canada, QlikView® is a registered trademark of QlikTech, Inc.

Flex is either a registered trademark or a trademark of Adobe Systems Incorporated in the

United States and/or other countries.

Internet Explorer, Microsoft, Silverlight, Visual Basic, Visual C++, Visual Studio, and

Windows are trademarks of Microsoft Corporation.

Java and JavaScript are registered trademarks of Oracle and/or its affiliates.

 - 5 -

Table of contents

Using QlikView with Automation and macros

1. INTRODUCTION .. 7

1.1. ABOUT THIS DOCUMENTATION ... 7
1.2. DISCLAIMERS ... 7
1.3. DOCUMENTATION OUTLINE .. 7

2. USING AUTOMATION AND MACROS WITH QLIKVIEW ... 8

2.1. THE QLIKVIEW AUTOMATION INTERFACE ... 8
2.2. HOW AUTOMATION AND MACROS CAN CONTROL QLIKVIEW ... 9
2.3. EDIT MODULE DIALOG ... 10
2.4. HALTING A MACRO THAT IS RUNNING ... 12
2.5. INVOKING MACROS .. 13
2.6. TWO TYPES OF CLASSES ... 17
2.7. QLIKVIEW OBJECT OWNERSHIP HIERARCHY... 17
2.8. QLIKVIEW OBJECT INHERITANCE HIERARCHY .. 18
2.9. INTERFACE DATA OBJECT CLASSES .. 18

3. THE VISUAL BASIC PROGRAMMING LANGUAGE .. 19

3.1. ABOUT VISUAL BASIC .. 19
3.2. DIFFERENCES BETWEEN VB, VBA AND VBS ... 19
3.3. NOTE ABOUT PARAMETERS TO METHODS AND PROPERTIES .. 20

4. GETTING HOLD OF A QLIKVIEW DOCUMENT ... 21

4.1. ACCESSING QLIKVIEW DOCUMENTS FROM THE INTERNAL VBSCRIPT INTERPRETER 21
4.2. ACCESSING QLIKVIEW DOCUMENTS FROM OUTSIDE QLIKVIEW ... 21
4.3. UNTYPED VB WITH QLIKVIEW AUTOMATION .. 22

5. GETTING HOLD OF THE FILE SYSTEM FROM VBSCRIPT .. 23

6. VBSCRIPT FUNCTION CALLS FROM SCRIPT .. 24

7. USING AUTOMATION FOR DYNAMIC DATA UPDATE.. 26

 - 6 -

Using QlikView with
Automation and

macros

 - 7 -

1. Introduction

1.1. About this documentation

General

This documentation provides a description of the QlikView Automation interface. The documentation

is supplemented by a special corresponding QlikView qvw document, APIguide.qvw, which is

included in the QlikView documentation installation package and available from the QlikView

download site. However, make sure that you have an updated version.

Visual Basic programming language

The Visual Basic programming language is the typical tool for using the QlikView Automation

interface. This document is however not a manual for Visual Basic. The reader is supposed to possess

a basic knowledge of Visual Basic programming.

1.2. Disclaimers

 Some specifications may be changed during the continued development.

 As changes are made to the QlikView type library in future releases VB programs using this

interface will have to be recompiled with an updated reference to the QlikView type library in

order to function with the new release.

 The QlikView automation interface lets you manipulate QlikView objects on a very deep internal

level. Incorrect use of functionality may cause program errors.

1.3. Documentation outline

This document covers the general features of the QlikView Automation interface and some aspects of

the Visual Basic programming language.

Chapter 2

gives you an overview of the user interface for using macros in QlikView and the Automation

interface in terms of class hierarchies.

Chapter 3

discusses some aspects of the Visual Basic programming language.

Chapter 4

discusses how to get hold of a QlikView as an Automation object.

Chapter 5

discusses how to get hold of the local file system from VBScript.

Chapter 6

discusses how to use VBScript functions in the QlikView script.

Chapter 7

discusses how to use Automation for dynamic data update.

 - 8 -

2. Using Automation and macros with QlikView

2.1. The QlikView Automation Interface

About Automation

QlikView is equipped with an Automation interface (Automation was previously known as OLE

Automation). This interface allows an external program or internal macro to access and control the

QlikView application.

A note on the use of COM APIs for Automation:

QlikTech strongly recommends all QlikView application developers using the Microsoft Component

Object Model (COM) APIs via VBScript macros in QlikView documents, or via other programming

languages like C# in combination with QlikView OCX, to consider adopting the QlikView AJAX

JavaScript APIs for client-side operations and the QlikView back-end APIs, like the QlikView

Management Service API for server-side operations, before the COM APIs become a legacy interface.

The COM software architecture dates back to the 1990’s and has been deprecated to some extent in

favor of .NET. For example, Microsoft does not support Visual Basic 6 since 2008 and Visual Studio

2010 no longer imports OCX controls that worked in Visual Studio 2008 and earlier versions.

For client-side operations, QlikView now provides a rich AJAX JavaScript Library that allows

developers to automate operations performed on QlikView documents, sheets, and objects. QlikView

WorkBench provides a set of tools for developers to customize the AJAX client. The new Extension

Objects interface uses the same JavaScript API and provides developers the possibility to embed new

visualizations in QlikView documents using web technologies like AJAX, Java, Silverlight, and Flex.

The new Document Extensions interface allows developers to inject their own custom JavaScript code

into the automatically generated web pages delivered by QlikView Server to browser-based clients that

open QlikView documents with the AJAX client.

Examples of common client-side operations performed with the JavaScript APIs:

 Methods that perform standard toolbar operations like Clear, Back, Forward, Lock, Unlock, Undo,

Redo, and Close Session.

 Methods that operate on ListBoxes like GetSelections and SelectTexts.

 Methods that read cell values from table objects and perform searches in table columns like

Data.Rows[][] and SearchColumn.

 Methods that operate on Bookmarks like SelectBookmark, NewBookmark, and DeleteBookmark.

For server-side operations, QlikView provides a Management Service API that exposes the

functionality available in the QlikView Server Management Console, including QlikView Publisher.

Examples of common server-side operations performed with the back-end QlikView Management

Service API:

 Methods for reading and running available Publisher Tasks.

 Methods for reading and changing security settings in QlikView Server (restricted to accounts

belonging to the QlikView Administrators group).

 Methods for reading and changing Document Metadata in QlikView Server.

A large number of programs developed with COM remain viable. QlikTech will release a full suite of

programs supporting this technology in version 11 including QlikView Desktop, QlikView Plugin for

Internet Explorer, and QlikView OCX. However, QlikTech would like to make those using this

technology aware that new technologies will be introduced in QlikView in future versions and version

 - 9 -

11 may be the last version with any forward compatibility (towards version 12) for products using the

COM APIs.

Invocation of QlikView Automation

The Automation interface is an integral part of QlikView and you do not have to perform any special

tasks to activate it.

In order for the Automation interface to work, you need a QlikView type library. The QlikView type

library is integrated in the QV.exe file. No further steps are necessary to install the type library.

If more than one instance of QlikView is running on a computer, the type library of the instance first

started will be in effect.

2.2. How Automation and macros can control QlikView

External control of QlikView

QlikView objects are accessible by means of Automation from external programs,

e.g. programs written in Visual Basic or C++ supporting Automation.

Such code can be used to control QlikView from other applications or from stand-alone programs.

Stand-alone executable files can be invoked from a QlikView document by means of launch buttons.

Internal VBScript interpreter

QlikView objects are also accessible via Automation from inside QlikView by means of the built-in

VBScript interpreter.

Macros written in VBScript inside a QlikView application can currently be invoked as an action

trigger in several ways:

Application events:

1. A macro can be run after opening a QlikView document.

3. A macro can be run after script re-execution.

4. A macro can be run after the Reduce Data command.

5. A macro can be run after a selection in any field in the application.

 - 10 -

Sheet events

6. A macro can be run after a sheet is activated.

7. A macro can be run when a sheet is deactivated.

Sheet object events

8. A macro can be run after a sheet object is activated.

9. A macro can be run when a sheet object is deactivated.

Button events

10. A button sheet object can be linked to a macro.

Field events

11. A macro can be run after a selection has been made in a specified field.

12. A macro can be run when a selection is made in any field logically associated

with a specified field.

13. A macro can be run after selections have been locked in a specified field.

14. A macro can be run after selections have been locked in a specified field.

Variable events

15. A macro can be run after a value has been entered in a specified variable.

16. A macro can be run when the value of a specified variable containing a formula has been changed

due to a change in the formula value.

2.3. Edit Module dialog

Macros and custom defined functions can be written in VBScript using the Edit Module dialog. The

module is saved with the application.

 - 11 -

By choosing Edit Module from the File menu you will enter the Edit Module dialog. The following

controls are available:

Macro edit box A large edit box where you type your macros. All macros should be written as

subroutines or functions between a matching pair of sub .. end sub or

function .. end function statements.

Check Once you have written a sub, you can have it syntax-checked and recognized as a

valid entry point by the VBScript interpreter by clicking this button.

Message The current status and any error messages will be displayed in this box.

List of entry points

 As soon as an entry point has been recognized by the VBScript interpreter, it will

appear in the list of entry points to the left in the dialog. Here you can also select

an entry point.

Test After selecting an entry point in the list of entry points you can test an individual

macro by clicking on this button. Error messages will be displayed in the Message

box.

Scripting Engine Sets the scripting engine for the document. You may choose between VBScript and

JScript. This documentation is written entirely for the VBScript option.

Intended Module Security Level
The designer of the QlikView document can set the intended macro security level

to Safe Mode or System Access. By indicating Safe Mode the document

designer indicates that the macros in the module do not contain any code that can

access the system or applications outside QlikView. Typically this would mean

code containing CreateObject, GetObject or Launch. If such code is

encountered during macro execution in a document declared to be in Safe Mode,

the execution will fail. If however the document designer indicates System

Access mode the end user will be prompted (see figure x) when opening the

document to approve system access (Allow System Access), disable all macros

in the document (Disable Macros) or allow only macros without system access

(Safe Mode). As soon as the user has chosen to approve or ban the macros this

will be remembered by the system and no more prompts will appear when opening

the document.

User Allowed Security Level

When opening a document declared to be in safe mode by the document’s designer

or a document created with QlikView version 5.01 or earlier, which contains

potentially unsafe code in the macro module script, the user will be prompted to

approve, disable or partially disable macros (see above). This choice will be

remembered by the system but can be changed at any later time via this setting.

The macro security level can be set to Don’t Run at All, Only Safe Mode or

Allow System Access.

OK This button saves changes and takes you back to the QlikView main menu.

Cancel This button discards changes and takes you back to the QlikView main menu.

 - 12 -

Furthermore, the Edit Module dialog contains a number of commands in four menus:

FILE menu

Export to Module File...

Saves the contents of the edit box in a text file to be specified in the Save Module

dialog that appears. The file will have the extension .qvm.

Print... Opens the Print Options dialog (see page 327).

EDIT menu

Undo Undoes the latest change.

Redo Redoes the latest Undo.

Copy Copies the selected text to the Clipboard.

Cut Exports the selected text to the Clipboard.

Paste Pastes the contents of the Clipboard into the dialog at the position of the cursor.

Clear Clears all the text in the edit box.

Select All Selects all the text in the edit box.

Insert File... Lets you browse for a file containing macros and inserts its contents into the edit

box at the position of the cursor.

Find/Replace Opens a dialog allowing you to find and replace numbers or characters in the

macros.

SETTINGS menu

Configure Opens the Editor page in the User Preferences dialog (page 68), where you can set

the font and color of the different text types appearing in the edit box.

HELP menu

Help Opens the QlikView help program.

2.4. Halting a macro that is running

A running macro can normally be interrupted by pressing CTRL+BREAK on the keyboard. You may

however have to close open dialog boxes originating from the macro before this command can be

executed.

The CTRL+BREAK option can be turned on and off via the Automation calls Application.EnableCtlBrk

and Application.DisableCtlBrk.

 - 13 -

2.5. Invoking macros

Invoking macros on document, field and variable events

Edit Module The Edit Module dialog is opened from the Tools menu.

Password This allows the application developer to protect the Edit Module dialog with a

password. To set a password, click the Module Password button on the Security

page of the Document Properties dialog.

Choose the Triggers page under Document Properties.

Add Action(s)…
In this dialog you will find an action that runs a macro among the external action

types. Note: Actions add simplicity and are intended as an alternative to macros.

Wherever Actions fulfill an intended purpose, they should be used instead of

macros.

 - 14 -

Document Event Triggers
In this group you can set macros to trigger on selected events in the document.

OnAnySelect A run macro action, if added, will be executed each time a selection has been made

in any field of the QlikView document.

OnOpen A run macro action, if added, will be executed each time the QlikView document is

opened.

OnPostReduceData
A run macro action, if added, will be executed after each time the Reduce Data

command has been executed.

OnPostReload A run macro action, if added, will be executed each time the script has been re-

executed.

Field Event Triggers
In this group you can set macros to trigger on changes in the logical state of a

specified field in the application. You must first select a field in the list before you

may assign macros to events in it.

OnSelect A run macro action, if added, will be executed each time a selection has been made

in the selected field.

OnChange A run macro action, if added, will be executed each time a selection has been made

in any field which is logically associated with the selected field.

OnLock A run macro action, if added, will be executed each time the field is locked.

OnUnlock A run macro action, if added, will be executed each time the field is unlocked.

Variable Event Triggers
In this group you can set macros to trigger on changes in the contents of a specified

variable in the document. You must first select a variable in the list before you may

assign macros to events in it.

OnInput A run macro action, if added, will be executed each time a new value is directly

entered in the selected variable.

OnChange A run macro action, if added, will be executed each time the value of the selected

variable changes as a result of changes in other variables or the logical state of the

application (typically applies when the variable contains a formula).

 - 15 -

Invoking macros on sheet and sheet object events.

Choose the Triggers page under Sheet Properties.

Edit Module By clicking on this button the Edit Module dialog is opened.

Sheet Event Triggers
In this group you can set macros to trigger on change of active sheet.

OnActivateSheet In this dropdown list you can select from existing macro names or type any name

which you later create a macro for in the Edit Module dialog. The macro, if it exists

will be executed each time the sheet is activated.

OnLeaveSheet In this dropdown list you can select from existing macro names or type any name

which you later create a macro for in the Edit Module dialog. The macro, if it exists

will be executed each time the sheet is deactivated.

Sheet Object Event Triggers
In this group you can set macros to trigger on activation and deactivation of a

specified sheet object on the sheet. You must first select a sheet object in the

Object ID list before you may assign macros to events in it.

OnActivate In this dropdown list you can select from existing macro names or type any name

which you later create a macro for in the Edit Module dialog. The macro, if it exists

will be executed each time the sheet object is activated.

OnDeactivate In this dropdown list you can select from existing macro names or type any name

which you later create a macro for in the Edit Module dialog. The macro, if it exists

will be executed each time the sheet object is deactivated.

 - 16 -

Invoking macros with sheet object buttons

The Actions page of the Button Properties dialog can be used to add a Run Macro action.

Macro Name In this textbox you input any existing macro names or type any name which you

later create a macro for in the Edit Module dialog. The macro, if it exists will be

executed when the button is depressed.

 - 17 -

2.6. Two types of classes

For the sake of clarity, the classes in the QlikView Automation interface have been divided into two

groups:

QlikView Object classes

QlikView Object classes are the fifteen classes which have a direct and obvious counterpart in a

known QlikView entity visible through the User Interface. These are the program itself, the fields, the

sheets and the various types of sheet objects.

Interface Data Objects classes

Interface Data Objects are classes used to define various properties of the QlikView Object classes.

2.7. QlikView Object ownership hierarchy

The seven most basic classes in QlikView form a classical object hierarchy, where objects of a class

are parents to children objects of another class. A child object cannot exist without its parent object,

but does not inherit any of the parent’s member methods or properties.

A schematic representation of the hierarchy could look as follows:

Application


Document

   
Variable Field Group Sheet

 
 SheetObject

Legend : downward arrows point at children class

 upward arrows point at parent class

 - 18 -

2.8. QlikView Object inheritance hierarchy

The basic class for sheet objects contains methods common to all types of sheet objects. However,

each of the sheet objects also need special methods, which only apply to them. Therefore all the

classes related to sheet objects form a different type of hierarchy, where there are no parents and

children, but rather a basic object and superset objects, which in addition to their own members inherit

all the members of the basic object.

A schematic representation of this hierarchy could look as follows:

 SheetObject



        
 Button ListBox MultiBox TableBox GraphBasics StatisticsBox CurrentSelection TextObject LineArrow



  
StraightTableBox Graph PivotTableBox

Legend :  indicates that class below inherits all members from class above

2.9. Interface Data Object classes

The Interface Data Object classes all have a name beginning with a capital I. They typically appear as

parameter objects or return objects in the methods belonging to the QlikView Object classes. They can

also appear as parameter objects in the methods or as properties to other Interface Data Object classes.

 - 19 -

3. The Visual Basic programming language

3.1. About Visual Basic

Visual Basic is a very suitable language for writing macros and other programs for controlling

QlikView via its Automation interface. Such code could of course also be written in other

programming languages supporting Automation, e.g. Visual C++, but for most users Visual Basic in

one of its forms is likely to be the first choice. For this reason a few words about the language could be

appropriate in this documentation.

Visual Basic is a programming language with roots in the old BASIC language, known to almost

everyone, who has ever programmed a computer. In comparison with its ancestor Visual Basic

however has a number of additions which make it a quite modern object oriented programming

language. Visual Basic has during the last few years turned into a macro and scripting language widely

used by major software producers. It was therefore a natural choice to use the language (in its

VBScript incarnation) as the macro language for QlikView.

As already mentioned above this document is not intended as a manual for Visual Basic. The reader is

supposed to possess a basic knowledge of Visual Basic programming. However, so many examples are

provided, that it should be possible for most readers to produce simple macros even without further

study of Visual Basic.

3.2. Differences between VB, VBA and VBS

Visual Basic as a stand alone compiler (VB), Visual Basic for Applications (VBA) and Visual Basic

Script (VBS) are all variations of the Visual Basic language. Most of the basic syntax and keywords

are the same, but small variations exist. When it comes to advanced capabilities and the ability to

communicate with the outside world from the code, there are large differences, especially between

VB/VBA on one side and VBS on the other.

This documentation has a number of examples in the form of small pieces of Visual Basic code. They

come both from the VB and the VBS environment. Sometimes, but not always, there is a note

indicating that the code works in one specific environment. The reader should be able to modify the

code without a problem if a certain environment refuses to accept a certain syntax.

Some main differences:

 VB VBA VBScript

Compile stand-alone .exe yes no no

Full VB syntax yes yes no

Data types full full limited

Different versions of VBScript

Apart from the incomplete listing of differences below, additional differences may exist as a result of

which version of VBScript you are using. QlikView is currently shipped with VBScript version 3.1.

 - 20 -

Some VB features not included in VBScript

Clipboard access

Collection

Conditional compilation

Constants

Data types (only variant supported)

Date/Time

DDE

Debug commands

Financial

Some features with limited implementation in VBScript

Array handling

Error handling (only On Error Resume Next)

File input/output

Some VB keywords and functions not supported by VBScript

Declare

Dim … as <datatype>

DoEvents

For Each … Next

GoSub … Return

GoTo

Line Numbers

Line Labels

Like

New

With … End With

3.3. Note about parameters to methods and properties

In VB, VBA and VBS the following rules apply to the use of parentheses around arguments:

 Always use parentheses around parameters to properties.

 Arguments to single parameter methods may optionally be enclosed in parentheses.

 Arguments to multiple parameter methods must not be enclosed in parentheses.

 - 21 -

4. Getting hold of a QlikView document

4.1. Accessing QlikView documents from the internal VBScript

interpreter

When using the internal VBScript interpreter, the only reference available is the ActiveDocument

special property of the class Application. All references must be made starting from that point.

Note!

The ActiveDocument property from VBScript provides a reference to the QlikView document running

the VBScript macro!

Examples:

rem ** VBScript Example 1 **

sub Clr

set QVDoc = ActiveDocument

QvDoc.ClearAll false

end sub

rem ** VBScript Example 2 **

sub a

 set up = ActiveDocument.GetApplication.GetUserPreferences

 Cp = up.ConfirmPurge

 if Cp=true then

 msgbox("Warning! No Reduce Data confirmation!")

 end if

end sub

rem ** VBScript Example 3 **

set doc1 = ActiveDocument

' ** ActiveDocument points at document running macro **

set App = doc1.GetApplication

set newdoc = App.OpenDoc ("C:\MyDocuments\QV4_Automation.qvw","","")

newdoc.Activate

' ** Note! newdoc is active but ActiveDocument points at doc1 **

4.2. Accessing QlikView documents from outside QlikView

QlikView documents can be accessed by means of the Automation interface from outside the

QlikView program via e.g. Visual Basic (VB) or Visual Basic for Applications (VBA).

Before using QlikView Automation with typed calls you must include the QlikView type library

(embedded in QV.EXE). In Visual Basic Studio this is done using the References command on the

Project menu.

Note!

The ActiveDocument method used from VB provides a reference to the currently active QlikView

document!

 - 22 -

Examples (VB/VBA only! Does not work in VBScript!):

rem ** VB/VBA Example 1 **

Private Sub OpenAndReload_Click()

 ' ** Open QV with named document **

 set QvDoc = GetObject("c:\MyDoc.qvw")

 QvDoc.Reload

End Sub

rem ** VB/VBA Example 2 **

Private Sub GetCurrentlyActiveDocument()

 dim ActiveDoc as new QlikView.ActiveDocument

 ' ** ActiveDoc points to active document in open QV. **

 ' ** The QlikView program must be started and have a **

 ' ** previously opened document. **

 …

End Sub

rem ** VB/VBA Example 3 **

Private Sub Ex2()

 Dim doc1 As New QlikView.ActiveDocument

 ' ** doc1 is set to active document in open QV **

 Set Appl = doc1.GetApplication

 ' ** Appl points at QV program **

 ' ** Appl.ActiveDocument points at doc1 **

 Set doc2 = Appl.OpenDoc("C:\MyDoc.qvw", "", "")

 doc2.Activate

 ' ** Appl.ActiveDocument now points at doc2 **

 ' ** Note difference from VBScript! **

 …

End Sub

4.3. Untyped VB with QlikView Automation

Although typed references is quite convenient to work with and also creates faster code, it is

sometimes desirable to use untyped code from VB (VBScript code is always untyped). The main

reason is often to avoid the need for recompiling the VB code when the type library changes e.g. as the

result of updated QlikView versions.

In order to achieve untyped code follow the steps below:

1) Do not include the QlikView type library in your project

2) Use the code shown below to get hold of QlikView

3) Do not use any statements such as dim … as QlikView.xxx

Example (Does not work in VBScript!):

Private Sub UntypedCall()

rem ** Create an untyped reference from VB **

set Qv = CreateObject("QlikTech.QlikView")

set ActiveDoc = Qv.ActiveDocument

rem ** ActiveDoc can now be used largely as the **

rem ** ActiveDocument reference in VBScript **

…

End Sub

 - 23 -

5. Getting hold of the file system from VBScript

When using the internal VBScript interpreter, it is possible to get hold of a reference to the local file

system by using a statement like the following :

 set fso = CreateObject("Scripting.FileSystemObject")

This reference can then be used for operations towards the file system.

Example:

 sub LogFunktion

 'This routine logs selection to a text file

 'Created by ICO

 set fso = CreateObject("Scripting.FileSystemObject")

 set mypath = ActiveDocument.GetProperties

 directory = mypath.MyWorkingDirectory

 On Error Resume Next

 ' See if file already exists.

 set filFile = fso.GetFile(directory & "log.txt")

 ' If not, then create it.

 if Err <> 0 then

 set filFile = fso.CreateTextFile(directory & "log.txt")

 end if

 set txsStream = filFile.OpenAsTextStream(8) 'For Appending

 set doc = ActiveDocument

 set mySelections = doc.fields("Field").GetSelectedValues

 for i = 0 to mySelections.Count - 1

 txsStream.WriteLine Now & " " & mySelections.Item(i).text

 next

 txsStream.WriteBlankLines 1

 txsStream.Close

 end sub

 - 24 -

6. VBScript function calls from script

Functions defined in the VBScript module of a QlikView application can be called from the script. If a

function called is not recognized as a standard script function, a check will be made to see if a custom

functions resides in the module. This gives you a large degree of freedom to define your own

functions. The ActiveDocument Object cannot be used in functions called from the script. Using

custom VBScript functions will of course be somewhat slower than executing the standard functions.

Examples:

rem **

rem ********** THIS IS VBSCRIPT CODE FROM THE MODULE *********

rem **

rem ******************** Global variables ********************

dim flag

rem *************** functions accessible from script *********

rem ********************* wrap for inputbox ******************

function VBin(prompt)

 VBin=inputbox(prompt)

end function

rem ********************* clear global flag ******************

function VBclearFlag()

 flag=0

end function

rem ***************** test if reference has passed ***********

function VBrelPos(Ref, Current)

 if Ref=Current then

 VBRelPos="Reference"

 flag=1

 elseif flag=0 then

 VBRelPos="Before "&Ref&" in table"

 else

 VBRelPos="After "&Ref&" in table"

 end if

end function

// **

// ******************** THIS IS THE SCRIPT ******************

// **

let MaxPop=VBin('Max population in millions :'); // Ask limit

let RefCountry=VBin('Reference country :'); // Ask ref.

let dummy=VBclearFlag(); // Clears the global flag

Load

 Country,recno(),

 Capital,

 "Area(km.sq)",

 "Population(mio)",

 VBrelPos('$(RefCountry)',Country) as RelativePos

from country1.csv (ansi, txt, delimiter is ',', embedded labels)

where "Population(mio)" <= $(MaxPop);

 - 25 -

Transfer of parameters

The following rules apply for parameter transfer of parameters between the load script and VBScript:

 Missing parameters are passed as NULL.

 If the actual expression evaluates to a valid number, the number is passed,

else if the actual expression evaluates to a valid string, the string is passed,

else NULL is passed.

 NULL is passed as VT_EMPTY.

 Return values are treated in a natural way.

 - 26 -

7. Using Automation for Dynamic Data Update

Dynamic Data Update provides a mechanism for making transactions with the in-memory data of

QlikView in real-time using syntax similar to SQL. The field data is updated in real-time without

running the script.

Example:

Rem Dynamic Data Update

sub Update

 SET Result = ActiveDocument.DynamicUpdateCommand ("UPDATE * SET

Discount = 4 WHERE City = 'Stockholm'")

 if Result = false then

 MsgBox Result.ErrorMessage

 end if

end sub

sub Insert

 SET Result = ActiveDocument.DynamicUpdateCommand ("INSERT INTO *

(Country, City) VALUES (DK, Copenhagen), (NO, Oslo)")

 if Result = false then

 MsgBox Result.ErrorMessage

 end if

end sub

sub Delete

 SET Result = ActiveDocument.DynamicUpdateCommand ("DELETE FROM

CITY WHERE IsNull (Discount)")

 if Result = false then

 MsgBox Result.ErrorMessage

 end if

end sub

Note!

It is not possible to use If clauses within the data statement!

Example:

Rem This example using If clauses in data statement will not work

sub UpdateIf

 SET Result = ActiveDocument.DynamicUpdateCommand ("UPDATE * SET

Discount = if(Discount >= 35, 0, if (City='Stockholm', Discount + 5,

Discount + 2)) WHERE Country = 'SE'")

 if Result = false then

 MsgBox Result.ErrorMessage

 end if

end sub

	Introduction
	About this documentation
	General
	Visual Basic programming language

	Disclaimers
	Documentation outline

	Using Automation and macros with QlikView
	The QlikView Automation Interface
	About Automation
	A note on the use of COM APIs for Automation:

	Invocation of QlikView Automation

	How Automation and macros can control QlikView
	External control of QlikView
	Internal VBScript interpreter

	Edit Module dialog
	Halting a macro that is running
	Invoking macros
	Invoking macros on document, field and variable events
	Invoking macros on sheet and sheet object events.
	Invoking macros with sheet object buttons

	Two types of classes
	QlikView Object classes
	Interface Data Objects classes

	QlikView Object ownership hierarchy
	QlikView Object inheritance hierarchy
	Interface Data Object classes

	The Visual Basic programming language
	About Visual Basic
	Differences between VB, VBA and VBS
	Some main differences:
	Different versions of VBScript
	Some VB features not included in VBScript
	Some features with limited implementation in VBScript
	Some VB keywords and functions not supported by VBScript

	Note about parameters to methods and properties

	Getting hold of a QlikView document
	Accessing QlikView documents from the internal VBScript interpreter
	Accessing QlikView documents from outside QlikView
	Untyped VB with QlikView Automation

	Getting hold of the file system from VBScript
	VBScript function calls from script
	Transfer of parameters

	Using Automation for Dynamic Data Update

