

Best Practices

The QlikView Data Model &
Working with Multiple Events

Version: 1
Date: 12/04/2007
Author(s): STB/ABY

"A best practice is a technique or methodology that, through experience and research,
has proven to reliably lead to a desired result."

Contents

CONTENTS .. 2

WHAT IS THE QLIKVIEW DATA MODEL 3

THE STAR SCHEMA APPROACH .. 4

MULTIPLE FACT TABLES/MULTIPLE EVENTS 5

CONCATENATE, One Fact Table Solution .. 5

Joining Fact Tables Solution .. 6

Central Link Table Solution (Event Space) .. 6

AGGREGATION ... 7

What is the QlikView Data Model
When you load your data in to the QlikView application, a data model will be created
based on the tables and columns you have in your script and also the names of the
columns and any resident loads and joins you have previously defined.

You will of course be driven by the type and structure of your data sources. These
sources and the underling data will have to be maipulated within the script to deliver the
Data Model that best
 suites your data for both performance and usability.

The Star Schema Approach
The standard layout and structure of data presentation is the Star Schema. QlikView is
generally most efficient when working in this space.

Within a Star schema model, the event data (transactions) reside in a central “Fact
Table” and the attributes of the event reside in separate “dimension tables”. The
diagram below shows the basic layout…

This model works well in a simplistic, single event scenario. But as QlikView can handle
multiple data sources from many different source systems and files, we have to work
with multiple event scenarios, or many fact tables.

Fact Table

A

B

C

Measure11

Measure21

Measure31

DimA:

A

A1

A2

A3

A4

DimB:

B

B1

B2

B3

B4

DimC:

C

C1

C2

C3

C4

The star schema (sometimes referenced as star join schema) is
the simplest data warehouse schema, consisting of a single "fact
table" with a compound primary key, with one segment for each
"dimension" and with additional columns of additive, numeric facts.
The name star schema is derived from the fact that the schema
diagram is shaped like a star.
(Source, Wikipedia - http://en.wikipedia.org/wiki/Star_schema)

Multiple Fact Tables/Multiple Events

CONCATENATE, One Fact Table Solution

The easiest solution is to link fact tables together but make the dimension tables event
specific. You can link/merge the Fact tables by using the CONCATENATE function.

Forced Concatenation
If two or more tables do not have exactly the same set of fields, it is still possible to
force QlikView to concatenate the two tables. This is done with the concatenate prefix
in the script, which concatenates a table with another named table or with the last
previously created logical table.

load a, b, c from table1.csv;
concatenate load a, c from table2,csv;

The resulting logical table has the fields a, b and c. The number of records in the
resulting table is the sum of the numbers of records in table 1 and table 2. The value of
field b in the records coming from table 2 is NULL.

The names of the fields must be exactly the same.
Unless a table name of a previously loaded table is specified in the concatenate
statement the concatenate prefix uses the last previously created logical table. The
order of the two statements is thus not arbitrary.

When concatenating these tables you may wish to add a manual reference column that
gives you a dimension to be able to split the merged fact table. The example below
shows a merging of two tables STOCK and SALES.

Transactions:

LOAD 'Sales' as Type,

 Account_Number,

 Order_Date,

 Sales_Amount

FROM Sales.qvd (qvd);

CONCATENATE (Transactions)

LOAD 'Stock' as Type,

 Account_Number,

 Order_Date,

 Stock_Amount

FROM Stock.qvd (qvd);

Joining Fact Tables Solution

Another solution is to force a join between the different fact tables to essentially create
one large core fact table. This explicit join is a costly operation as the event specific
dimensions can be statistically unrelated and the resultant fact table will grow to contain
all possible values. Joining data may also mean that you remove data you actually
require in your analysis. As in ANSI SQL, joining tables will require data to be present in
one of the tables and that table will be the driver for the data appearing in the final
joined table.

Central Link Table Solution (Event Space)

In the event of multiple fact tables QlikView In-Memory Technology allows us to create a
central link table that only contains the existing data combinations. Instead of Joining
the tables the event dimensions can be merged (CONCATENATED) in to one central
Link table. This link table can then be linked back to the event measures one side and
the dimension tables on the other.

Event1:

Key

Measure11

Measure12

Event2:

Key

Measure21

Measure22

Event3:

Key

Measure31

Measure32

Link Table

Key

A

B

C

DimA:

A

A1

A2

A3

A4

DimB:

B

B1

B2

B3

B4

DimC:

C

C1

C2

C3

C4

Aggregation
Another QlikView feature that improves flexibility and also makes the Link Table
topology even more useful is the fact that aggregations can be done both in the Script
(pre-defined) and in the front end application (GUI, front end objects). The standard
OLAP way of working would require predefined aggregation in the measures to create
the cube. The OLAP cube then has to pre-aggregate at every level within the predefined
dimensions set up in the OLAP model.

In summary, you do not have to apply any aggregation within the creation of the
QlikView script if not necessary, any SUM, TOTAL etc can be performed at the GUI
development stage. This enables a user to have core detail (transaction values) within
an application for detailed analysis.

