

QlikView date fields

QlikView Technical Brief

Nov 2014, HIC

www.qlikview.com

2

Introduction

In most cases, you will have no problems loading dates in QlikView. The software has an intelligent

algorithm to recognize dates independently of which region you are in. It usually just works and you

do not need to think about it. However, in some cases dates are not properly recognized and then

you need to add some code in the script to make it work.

However, many of the questions on QlikCommunity concern dates and how to use date functions in

QlikView. Although the basics for dates are fairly simple, there are many misunderstandings. This

technical brief is an attempt to give some background and some suggestions. Those of you who

are experienced QlikView users will maybe not find anything new in this document, but others most

likely will.

Data types

First – there are no data types in QlikView. Instead

QlikView uses a dual data storage for all field

values: every field value is represented by a string

and – if applicable – a number. If a field value can

be interpreted as a number (or a date) then a

number is stored in the numeric part of the dual

storage, while the display string is stored in the

textual part of the dual storage.

The serial numbers used for dates are the same as

in Excel: the number of days passed since the 30
th

December 1899 using the Gregorian calendar. The integer

part of the serial number is the date and the fractional part is

the time of the day. For example, if the 31
st
 of January 2012

at 6 o’clock in the morning is loaded with US date format,

then the number 40939.25 is stored together with the string

‘1/31/2012 6:00 am’.

This way dates, week days and month names can have

textual names or arbitrary formats and still be numerically

sorted. The fields can also be used in numerical calculations

and comparisons and as continuous axes in graphs.

Numerical functions always use the numeric part of the dual

field and string functions always use the string part.

3

Interpretation and formatting

There are two important types of QlikView functions that deal with time and dates: Interpretation

functions and Formatting functions. The interpretation functions – e.g. Date#() and TimeStamp#()

- are string-to-number conversions, i.e. the input is a string that contains a date and the function

creates a correct date serial number. The output is a dual field, i.e. both string and number.

The formatting functions – e.g. Date() and TimeStamp() – are in a way the opposite: they are

number-to-string conversions, i.e. the input is a date serial number and the function creates a string

with the properly formatted date. Also here the output is a dual field, i.e. both string and number.

You rarely need to use the interpretation or formatting functions. Normally interpretation and

formatting just work without you having to do anything. The reason for this, is that if there is no

interpretation function explicitly used, QlikView tries with the date format specified in the format

variables, e.g. it uses what it finds in the “Set DateFormat = …” statement in the beginning of the

script, which usually is just what you need.

But sometimes, the interpretation and formatting must be done using an explicit format. Here are

some suggestions of how to work with dates and times if your fields aren’t interpreted correctly:

Tip 1: Use interpretation functions

If the date isn’t automatically recognized, you may need to use an interpretation function to

interpret it:

 Date#(DateField, 'M/D/YY') as Date

Make sure you really use an interpretation function and not a formatting function – it should have a

hash sign “#” in it.

Also, you should check that QlikView really has interpreted the dates as numbers: Either implicitly

by checking that the dates are right-aligned in the list box, or explicitly by formatting the dates as

numbers (Properties – Numbers) and verifying that the numbers displayed have values around

40000 (for dates in present time).

The format code used is the same as in Excel. Note that the letters in it are case sensitive. “M”

means months and “m” means minutes.

The string does not have to be a complete date. A partial date can also be interpreted. If you for

instance have a field with only month names in it, you can convert the textual month names to dual

months using:

 Month(Date#(Month,'MMM')) as Month

4

Tip 2: Nest functions

It is often practical to nest an interpretation function inside a formatting function, e.g.

 Date(Date#(DateField, 'M/D/YY'), 'YYYY-MM-DD') as Date

The inner function ensures that the input text is interpreted correctly – so that a serial number

representing the date is created. The outer function ensures that the serial number is displayed in a

correct date format.

Example:

You have a date field where the dates are stored as ‘20120131’, i.e. no slashes or dashes between

the day, month and year. QlikView will incorrectly interpret this as an integer number with a value of

slightly more than 20 millions. I say ‘incorrectly’ since it assigns values that are other than the

correct date serial numbers, making comparisons between dates impossible. If you for instance

want to calculate the number of days between 20120131 and 20120201, you would get 70, when it

obviously should be 1.

One correct way to load it could be

 Date(Date#(DateField, 'YYYYMMDD'), 'M/D/YYYY') as Date

where the inner function contains the actual date format and the outer contains the preferred date

format. Also, this way the dates get numeric values of around 40000 and can be correctly

compared to other dates and used in calculations.

Tip 3: Use the MakeDate function

If your date is stored in several fields, e.g. one field for year, a second for month and a third for day,

you should use the MakeDate function to create a proper date serial number for the specified day:

 MakeDate(Year, Month, Day) as Date

5

Tip 4: Use the rounding functions

The date field in the source data is often not just a date, but instead a timestamp corresponding to

a specific time during the day. The date serial number will then not be an integer. For instance, the

time ‘6 pm 1/1/2012’ corresponds to the date serial number 40909.75.

In such a case it is not enough to use the date function to remove hours and minutes from the

formatting. Though formatting the timestamp as a date will hide the time from being displayed, the

fractional part of the serial number will still be stored in the numeric part of the field and the field

may hence give incorrect results in comparisons.

Instead, a rounding function must be used to make the additional 0.75 from the numeric value

disappear, e.g.:

 Date(Floor(Date), 'YYYY-MM-DD') as Date

Another case where a rounding function is good, is when the date is a key field linking two tables. If

the field value is a timestamp where you have a time of the day other than midnight – 00:00:00 –

then this value will not link to a date in another table even if you have formatted it as a date: The

string part of the dual format is not used as key, if there is a numeric value. The numeric value is

always used as key. Hence it is not enough that two numeric values are formatted exactly the

same. If you want to use a date as a key, you should use the integer part of the timestamp and

omit the information about time of the day.

Example:

You have a timestamp, e.g. '2012-01-28 08:32:45' in your transaction table and you want to link

this to a master calendar table containing dates. One correct way to load this key could be

 Date(Floor(Timestamp#(Created, 'YYYY-MM-DD hh:mm:ss')), 'M/D/YYYY') as CreatedDate

In addition to the key CreatedDate, other fields could also be created to show the fractional part of

the timestamp

 Timestamp#(Created, 'YYYY-MM-DD hh:mm:ss') as CreatedTimestamp,

 Time(Frac(Timestamp#(Created, 'YYYY-MM-DD hh:mm:ss')), 'hh:mm:ss') as CreatedTime,

Also note that the function Frac() is used to remove the integer part of the number for the field that

only contains the time information.

Tip 5: Always use the numeric value in variables

Fields and variables are dual, but the dollar-expansion of variables is not. This means that

whenever you want to store a date in a variable and use it later for e.g. a numeric comparison in a

6

where clause, it is easier if the variable is purely numeric instead of a string containing a date

format. Hence, use the following construction:

 Let vToday = Num(Today()) ;

 Let vAMonthAgo = Num(AddMonths(Today(), – 1) ;

Subsequent use of the variable is then straightforward, e.g.:

 … Where DeliveryDate > $(#vAMonthAgo) and DeliveryDate <= $(#vToday);

Note the hash sign in the dollar expansions: it forces an expansion using decimal point. This is

helpful for users with decimal comma (and not decimal point) in the national settings.

Tip 6: Use combination fields, e.g. Year and Month as one field

Date numbers should be used for year-month fields

and other similar situations:

 Date(MonthStart(DateField), 'YYYY-MMM') as
YearMonth

Here the MonthStart() function returns the date

number of the beginning of the month and the Date()

function is used to hide the day of the month.

There are other similar useful functions like

WeekStart, QuarterStart and YearStart.

Tip 7: Use the Dual function

The Dual function can often be used to solve trickier

problems. The Dual function lets you specify both a

numeric value as well as which text to associate with

this value.

For instance, if you want to use the week number, but

sorted correctly also over the change of the year, then

you should use the date number as numeric value but

display the week number, optionally together with the year:

 Dual(Week(Date), WeekStart(Date)) as YearWeek

 Dual(Year(Date) & '-w' & Week(Date), WeekStart(Date)) as YearWeek

Or if you want to create fiscal months:

7

 Dual(Month(Date), Mod(Month(Date)-$(vFirstMonthOfFiscalYear),12)+1)

Tip 8: Fields with mixed date formats

If you have mixed date format in one field or you have

data from different sources using different formats,

you can use the Alt() function to define several

possible date formats:

 Alt(Timestamp#(MixDate,'M/D/YYYY h:mm tt'),

 Date#(MixDate,'M/D/YYYY'),

 Date#(MixDate,'D/M/YYYY'),

 Date#(MixDate,'YYYYMMDD'),

 Date#(MixDate,'DD.MM.YYYY'),

 Date#(MixDate,'YYYY-MM-DD')

) as MixDate

The order of the interpretation functions also defines the priority when several formats are possible

for one specific field value, e.g. 8/4/2012, which in the United States means 4
th
 of August, but in the

United Kingdom means 8
th
 of April.

Summary

Always convert anything date- or time like to a proper date serial number and use this as the

number in the dual format. The text part of the dual format is a display topic; it is up to you to

decide what to show. Good Luck!

Inter gravissimas – The Gregorian calendar

… or some interesting but useless facts:

The QlikView serial numbers are well defined and behaving correctly according to a generalized

Gregorian calendar from Jan 1
st
, 0 AD and roughly 2 billion years forward. As a comparison, you

can note that the Excel date functions are defined from March 1 1900. If you enter dates before

this, Excel will incorrectly assume that 1900 was a leap year.

If you are a calendar aficionado, you might argue that there was no year 0; that the year 1 AD was

preceded by the year 1 BCE without an intervening year 0. This is correct – historians have never

included a year zero. This system was designed by the monk Dionysius Exiguus in the 6
th
 century,

when the existence of zero as a number was not known in Europe and the Julian calendar was

used.

8

The Gregorian calendar was introduced much later, in 1582 by Pope Gregory XIII. The papal bull

did not say anything about how the new calendar should be applied backwards in time. As a

consequence, when the new calendar was extended backwards, the old logic from the 6
th
 century

was used. This is today called the proleptic Gregorian calendar. It has no year zero and the

common AD/CE or BC/BCE notation is used.

But there is a second generalization of the Gregorian calendar: the astronomical year numbering,

with a separate year zero. Very early, astronomers used a separate year for year 0 (Christi) in the

astronomical tables, as opposed to the years before (Ante Christum) and after (Post Christum), e.g.

Johannes Kepler (1627, the Rudolphine Tables) and Philippe de la Hire (1702, Tabulæ

Astronomicæ). However, it was not until 1740 that Jacques Cassini introduced the number 0 to

mark this year in his Tables Astronomiques.

The astronomical year numbering is now an ISO standard (ISO8601) and is used worldwide in all

scientific contexts. Hence, year -0001 (ISO 8601) is the same as year 2 BCE (proleptic Gregorian).

QlikView follows the ISO8601 standard.

Unfortunately many QlikView date functions do not work properly for the years before 1 AD.

However, it is still possible to use QlikView serial numbers for this period. The things to be aware of

are:

• Several functions do not work properly, e.g. Date(), Date#() and MakeDate(). Hence,

formatting the date will produce something incorrect

• If you want to use the proleptic Gregorian calendar, you can use the following as year

function:

Num(if(Year(Date)>0, Year(Date), Year(Date)-1),'#0 AD;#0 BCE') as Year

• You can generate the dates using something similar to e.g.

Load Dual(Num(Year(Date),'0000') &'-' & Date(Date,'MM-DD'),Date) as Date;

Load MakeDate(1)-recno() as Date autogenerate 100000;

