

QlikView Best Practice Guidelines:

Development

Version: 0.5 - draft

Date: Jan, 2011

Author: BPN, JCA

Best Practices Guidelines: Development

Best Practices Guidelines: Development

Table of Contents

UI Design ……………………………………………………………………………… 4

Scripting…………………………………………………………………………………. 9

Data Models ………………………………………………………………………. 15

Variables, Actions and Macros ………………………………………………. 23

Project Management ……………………………………………………………… 29

Security (Section Access) …………………………………………………………… 33

Optimization ………………………………………………………………………… 34

Code Management & Migration ……………………………………………………. 38

Naming Standards …………………………………………………………………... 48

Folder Structures ……………………………………………………………. 49

Testing/Certification ……………………………………………………………… 51

Troubleshooting/Support ………………………………………………………….. 57

Training …………………………………………………………………………………62

Summary……………………………………………………………… ……………... 64

Best Practices Guidelines: Development

Introduction
This Best Practices guide is a reference manual for QlikView developers. QlikView developers

are individuals who design and implement QlikView applications and their areas of expertise

range from data modeling to scripting to UI design. This document is designed to facilitate much

clearer understanding of the methodologies and practices that are optimal for producing highly

usable, highly optimized and highly configurable QlikView applications, whether used by small

departments or by large enterprises.

UI Design

Design matters. It impacts user adoption rates, utilization rates, speed of analysis and usage

patterns. All of these things impact how effective your QlikView document can be. The

principles of good interface design promoted by Stephen Few and Edward Tufte are the basis

for the best practices QlikTech recommends when designing and building a QlikView document.

The outline below shows (at a high level) some of those tenants of good design. QlikTech

makes many QlikView examples, documents, slide decks and other materials available to help

demonstrate these principles.

Examples

Use of supplied or developed templates for consistency and simplicity:

Best Practices Guidelines: Development

Use of implied closure to limit non-data ink space:

Use of neutral and muted colors and use of contrast: Muted and neutral colors are much

less strenuous on the eyes and increase user adoption. Use of contrast helps the eyes

quickly identify interest points or exceptions. These concepts go together, since the use of

contrast with primary colors is difficult to do. Consider a combination of muted colors and

the use of contrast in all charts, especially where exceptions or outliers are meant to be

highlighted.

Best Practices Guidelines: Development

Use of size, shapes and intensity to call attention to data points: Shapes are another rapid

identification point for the eyes. They can be used to segment data points into groups. Color

intensities work well for ranges of values or outliers.

Many of the design best practices are displayed in the demo applications that are publicly

available at http://www.demo.qlikview.com. In addition, there is a slide deck presentation

covering design techniques for QlikView which is very comprehensive. Please visit

QlikCommunity and search for DataVisualization.ppt.

Other best practices for UID Design include:

- Put a current selections box on every sheet in the same location

- Make list boxes appear in the same locations on every sheet

- Organize list boxes and multi-boxes first in the frequency of use (most used on the top,

least used on the bottom). Then, sub-sort the list boxes into groups in hieratical order

(largest group on the top, smallest group on the bottom).

- Put dropdown select properties on every straight/pivot table

- Use Variables as expressions instead of defining the expressions directly in the

expression editor

- When Creating a Drill group, add an expression for the label of the field in the drill group.

The expression should be equal to Only(All Higher fields) & ‘>’ & ‘current field name’, so

that it equates to SalesRepA>Product. SalesRepA is the item which was drilled into,

Product is the values which are represented in the chart

- Instead of defining exceptions in straight/pivot tables, instead use charts which show the

exceptions quickly

Best Practices Guidelines: Development

- Always include a Help / How-To tab and/or a link to a help site on our website.

Examples of Help/How-To tabs are included in the Getting Started section in QlikView.

Consider copying one of the interactive How-To pages into a template that you can use

across applications.

- Name each sheet and object with descriptive headers

- Black & White charts are best when considering color blindness and simplicity

- Red & Green - Many people are red/green color-blind - consider this e.g. when

using visual cues

- Red and green are also associated with good and bad indicators / performance.

Only use red and green when you mean to indicate good and bad.

- Design for a fixed resolution that applies to your organisations desktops (e.g.1024 x 768)

- Always consider sort order and whether to present frequency (# or %) in list

boxes (sometimes very useful but definitely not always)

- Repeated objects (clear buttons) at the same position in every sheet

- Multi boxes can be good for people that are used to working with QV but they are

not very intuitive. List boxes take more space but are better (you can e.g. see the

gray areas better).

- Clean layout in charts – line up axis titles, chart title, text, etc…

- Hierarchy dimensions placed in order

- Time and Dates are crucial elements of most apps and they must be highly intuitive to

search and use

- Table columns should always be searchable (display totals in tables whenever it makes

sense)

Best Practices Guidelines: Development

QlikTech strongly recommends the incorporation of design best practices for all QlikView

developers and designers when starting a QlikView deployment. Good interface design leads

to high adoption rates and effective interfaces. QlikView’s rich UI layer allows for world class

visualization and design in all QlikView applications.

For new QlikView deployments and new designers it is strongly recommended that QlikView

Designer training be attended by all developers and designers. The Designer courses are

structured to reinforce good design and to learn the QlikView techniques that help deliver that

design in a simple, elegant way. They are also a great opportunity to practice good design and

apply that design to your QlikView applications in a lab setting.

UI Design References:

� QlikTech Demo Site http://www.demo.qlikview.com
� QlikTech Visual Design Presentation on QlikCommunity DataVisualization.ppt
� Information Dashboard Design, by Stephen Few

� Show Me the Numbers, by Stephen Few

� The Visual Display of Quantitative Information, Edward R. Tufte
� Visual Explanations, by Edward R. Tufte

Best Practices Guidelines: Development

Scripting
Overview
Scripting is the environment in which a QlikView Developer will automate the extract, transform

and loading process of bringing data in the QlikView environment. Each QlikView document

(application) contains a script editor through which this process is enabled.

Best practices dictate that using multiple tabs within a script will split out the various parts,

enabling a simple view of the information for future development and support. Depending on the

complexity of the application, you may have a variety of different script sections. The common

parts of a script are below:

• Security (usually hidden script)

• Dates and Calendar information

• Tab per data source

• Tab per key measure/core table

• Tab per lookup table

Security Tab (Hidden Script)
In QlikView it is possible to restrict the privileges of a document user from the Document

Properties: Security and the Sheet Properties: Security pages. Any settings can be altered if

the document user is logged in as ADMIN.

The user identity and password needed for opening a user restricted document are specified in

the load script and will show up in the log file if you allow QlikView to generate one. However, by

having the user access in the hidden script instead, the log file will not give away any login

information. The Hidden Script button opening the hidden script is found in the Edit Script menu.

Best Practices Guidelines: Development

Preceding Loads
The use of preceding load statements can simplify your script and make it easier to understand.

See the code below for an example of this.

Table1:

LOAD CustNbr as [Customer Number],

 ProdID as [Product ID],

floor(EventTime) as [Event Date],

month(EventTime) as [Event Month],

year(EventTime) as [Event Year],

hour(EventTime) as [Event Hour];

SQL SELECT

 CustNbr,

 ProdID,

EventTime

 FROM MyDB;

This will simplify the SQL SELECT statement so that the developer can continue to

test/augment the statement using other tools, without the complexity of the QlikView

transformations embedded in the same SQL statement.

For more information on the Preceding LOAD feature, see the QlikView Reference Manual.

Other scripting best practices include:
- Use Autonumber only after development debugging is done. It’s easier to debug values

with a number in it instead of only being able to use surrogates. See the QlikView

Reference Manual if you are not sure how/when to use Autonumber.

- Put subject areas on different tabs so you don’t confuse the developers with too much

complexity

- Name the concatenate/join statements

- When adding script to a QVW, it is best to do a binary load on large data sets then

extend the script. Later merge the script after development is near complete. This

doesn’t functionally change anything, but it saves time during development.

Best Practices Guidelines: Development

- Use HidePrefix=%; to allow the enterprise developer to hide key fields and other fields

which are seldom used by the designer (this is only relevant when co-development is

being done).

- When using the Applymap() function, fill in the default value with something standard like

‘Unknown’ & Value which is unknown so users know which value is unknown and can go

fill it in on the source system without the administrators having to get involved. See the

QlikView Reference Manual if you are not sure how/when to use Applymap().

- Never user Underscores or slashes (or anything ‘techie’) in the field names. Instead

code user friendly names, with spaces.

- Instead of: “mnth_end_tx_ct” use: “Month End Transaction Count”

- Only use Qualify * when absolutely necessary. Some developers use Qualify * at the

beginning of the script, and only unqualify the keys. This causes a lot of trouble scripting

with left join statements, etc. It’s more work than it’s worth in the long run. See the

QlikView Reference Manual if you are not sure how/when to use Qualify and Unqualify.

- Use “Include” files or hidden script for all ODBC/OLEDB database connections.

- Use variables for path name instead of hard-coding them throughout your script. This

reduces maintenance and also provides a simple way to find paths (assuming you put

them in the first tab to make it easy to find).

- All file references should use UNC naming convention. Do not use C:\MyDocs\...

- Always have the Logfile option turned on if you need to capture load-time information for

degbugging purpose

- Comment script headings for each tab. See example below:

Best Practices Guidelines: Development

- Comment script sections within a tab with short descriptions. See example below:

- Add change date comments where appropriate. See example below:

- Use indentation to make script more readable by developers. See example below:

- Never use LOAD * in a load statement. Instead list the columns to load explicitly so

that you know what fields will be loaded and this won’t change as new columns are

Best Practices Guidelines: Development

added or deleted from source tables. This also helps developers to identify the loaded

fields in the script. See example below:

Development Checklists
QlikTech recommends the use of a developer checklist to highlight and reinforce development

best practices.

Most enterprise clients develop this from a template or sample of best practices. Consult your

Account Executive or Regional Services Director for a sample from QlikTech. One way to help

promote the visibility and presence of the checklist is to limit it to one page and laminate it for

each developer. This will make it easier to post the checklist and refer to it often. Some

clients will use the checklist in code reviews to ensure that best practices were followed before

releasing a QVW to Test or Production environments.

Best Practices Guidelines: Development

A screenshot sample of a checklist is below:

Best Practices Guidelines: Development

Data Models
Represented below are diagrams of 3 basic data models that can be built in QlikView (along

with many other combinations). Using these 3 examples we can demonstrate some of the

differences in performance, complexity and flexibility between them.

 Option 1 Option 2 Option 3

 Snowflake Star Schema Single Table

While star schemas are generally the best solution for fast, flexible QlikView applications, there

are times when multiple fact tables are needed. Here are the wrong and right ways to join

them:

Best Practices Guidelines: Development

Further examples of how to build and use link tables are contained in QlikCommunity on line

(http://community.qlikview.com/)

In addition to modeling for multiple fact tables, an alternative is to concatenate the two fact

tables into a single fact table. This is illustrated below.

To show how this could be accomplished, the section below takes us through a scenario of two

facts tables to be combined into one fact table.

Best Practices Guidelines: Development

Best Practices Guidelines: Development

A table example of this concatenation of fact tables is shown below.

Best Practices Guidelines: Development

Large Data Sets
QlikView can handle very large data sets and routinely does so. However, to optimize the user

experience and hardware needed, you have options.

Consider the following scenario: You have a large orders data set (1 billion rows). You need to

provide high level summary metrics for your executives, trending analysis for your Business

Analysts, and detail tables and values for your Orders Processing team. You have many data

design options with QlikView, but for demonstration purposes let’s explore just 3 of them below:

1) Detailed fact table only – allow QlikView to do all of the work to display the details and

summarize metrics from the lowest level of detail to the highest summary needed.

a. Advantages – simplicity. This is the easiest solution to code. You simply

connect the Orders at a detailed level (perhaps SKU level) to the data model and

design all of the high level metrics, trending charts and detailed tables and

selections into the QVW.

b. Disadvantages – QlikView will need to aggregate up to 1 billion rows of detail

with every selection made. While QlikView is probably the only BI tool that can

do this with acceptable performance, it will still result in a slower user experience

than it needs to.

Best Practices Guidelines: Development

2) Document Chaining – 2 (or more) versions of the QVW are built. One of them has the

detailed Orders table as the primary fact table, the others have pre-aggregated versions

of the Orders table as their primary fact tables. Let’s assume just 2 QVWs for this case.

You have a diagram below showing the data model from the ”summary” QVW and a

data model from the ”detail” QVW. Note that the dimension values are largely the same

between the two models. The main distinction is the fact table in the data model. The

users can start from the summary application, showing high level metrics and charts.

If they want to drill into details you can use the Document Chaining feature in QlikView to

transfer selections from one QVW to another QVW and open that second QVW. The

user will see new charts and tabs show up and (if you design it as such) doesn’t even

need to know they have trasferred from one QVW to another. This means you will only

be using the 1 billion row fact table when your users need it. The rest of the processing

will take place on the pre-aggregated version of the Orders table, which might be smaller

than 100 million rows, for example. Document Chaining is discussed in detail in the

QlikView Reference Manual and in several QlikView documents.

a. Advantages – optimizes hardware and speed of response for QlikView navigation

and charting. Because the users’ selections and navigation are specific to their

needs, you don’t waste CPU and RAM processing 1 billion rows of detail when

the user didn’t need things processed at that level.

b. Disadvantages – tables (QVDs) need to be pre-aggregated and maintained for

this approach. While this is a one-time development effort, it is slightly more

complex than option 1, where only one version of the Orders table is needed.

Best Practices Guidelines: Development

3) The 3rd option (and by no means the last) is to use a pre-aggregated summary table in

addition to the detailed table in a single QVW data model. The diagram shown below

is one way to use a pre-aggregated table in the same data model as the detailed version

of the table. You would load the pre-aggregated table as a data island (not connected

to the other tables in the data model). Then, as relevant selections in the detailed fact

table are made you can transfer those selections to the pre-aggregated table using a

triggered Action (QlikView version 9 and above).

a. Advantages – this option doesn’t require a second QVW and document chaining

in order to use both detailed and summary versions of a large table.

b. Disadvantages – this option will require some settings to be made in the QVW to

trigger the actions that transfer selections from one table to another. As the

QVW changes over time, you will need to keep track of where/when to make

these actions trigger.

Best Practices Guidelines: Development

Please note: these are many more ways you could meet the needs described in the above

scenario. These are just 3 mothods that call out the features and capabilities of QlikView to

manage very large data sets. Please see the Architecture Best Practices Guide for more

examples of ways to manage large data sets and large deployments of QlikView in an optimal

way.

Key factors that affect the model:
• Distinct column data.

• Distinct key field information.

Both can affect the memory size of the Data Model and the user experience. By having many

tables, the links can become a memory hog.

It has been known that you can reduce your memory foot print by fifty percent when modifying

the data structure; and thus, additionally increasing the UI response.

See the Optimization section of this document for helpful hints on reducing the size and

complexity of your data model.

Best Practices Guidelines: Development

Variables, Actions and Macros

Variables
(Following is taken from a blog post: http://www.quickqlearqool.nl/?p=902)

In this post I want to share with you a good practice in handling the various expressions that

exist in a QlikView document. The most used expressions are the ones used in charts, where

they hold measures such as Sum(Sales), Sum(Price*Quantity), etcetera. These are the ones

more likely to be reused by other objects and in different sheets. There many other expressions

including Chart Attributes, Color Expressions and Show Conditions, you can see them all by

going to the menu Settings/Expression Overview.

The most used expressions are the ones used in charts, where they hold measures such as

Sum(Sales), Sum(Price*Quantity), etcetera. These are the ones more likely to be reused by

other objects and in different sheets. There many other expressions including Chart Attributes,

Color Expressions and Show Conditions, you can see them all by going to the menu

Settings/Expression Overview.

The use of expressions can be intensive in QlikView, especially when having a sophisticated user

interface. There is a growing need to handle these expressions in a more efficient way, and this

can be accomplished by the use of variables.

Reasons for holding expressions in variables:

• To achieve reuse: the formula for a measure such as Sales usually remains the same

across a QlikView document, so it doesn’t make sense to write it on every chart.

• To enforce consistency in the formulas: by avoiding the risk of having different formulas

that calculate the same measure.

• To provide a single point to apply changes: if and when a formula needs to be changed,

you only need to change one variable and all the charts and other objects that refer to

that variable will follow.

• To allow the end user to make changes through an input box, when needed. This could

be the case of targets for KPIs or general parameters.

Best Practices Guidelines: Development

Variables can be created manually by going to the menu Settings / Variable Overview or by

using the SET/LET statements in the script. They have a name and a value, which can hold any

sort of strings or numbers, and they can be used as a reference from every sheet object. The

Input Box is the object designed to show variables in the user interface.

If you want to start experimenting with moving your expressions to variables try the following:

1. Go to the Expressions tab on one of your charts and copy one of the formulas, for

instance Sum(SalesValue)

2. Go to the menu Settings / Variable Overview and click on the “Add” button to create a

variable. Give it a name such as vFormulaSales (it is a best practice to have all variable

names starting with a v to help differentiate them from Fields).

3. Select your variable from the variable list an paste the formula from the chart in the

“Definition” text box. If the formula starts with an = sign, remove it. Finally click on “OK”

to save the changes.

4. Go back to the Expressions tab of your chart properties and replace the formula with

the following: $(vFormulaSales)

The $ sign expansion indicates the string contained in the variable is a formula that needs to be

calculated.

The final step is to replace replace the cloned formulas in all the other objects so they all refer

to the same formula contained in the new variable. Every new object that needs to show

Sum(Sales) should also refer to the variable.

You may already have quite a few QlikView documents where you didn’t apply this practice, but

it’s never too late to get started. In the long term it’s really worth it.

< end blog content >

Best Practices Guidelines: Development

Variables are commonly used to help switch the database settings between environments

without hard coding required in the QVW as it moves from environment to environment. See

the sample code below for a best practice technique for doing this:

SET vEnvironment= ‘PROD’;

IF vEnvironment = ‘PROD’ THEN

···ODBC CONNECT TO MyOracleDBProd (XUserID is *****, Xpassword is ****)

 SET vDBName = ‘MyOracleDBProd‘;

ELSEIF vEnvironment = ‘TEST’ THEN

···ODBC CONNECT TO MyOracleDBTest (XUserID is *****, Xpassword is ****)

 SET vDBName = ‘MyOracleDBTest‘;

ELSE

···ODBC CONNECT TO MyOracleDBDev (XUserID is *****, Xpassword is ****)

 SET vDBName = ‘MyOracleDBDev‘;

END IF

In your LOAD statements you now reference the vDBName as follows:

SQL SELECT *

FROM $(vDBName).MySchema.MyTable;

There are two simple methods for changing this variable value from environment to environment

as the QVW gets promoted:

1) Force the developer or Admin to manually change the variable value in the script

2) Use an Include file with the SET vEnvironment…. statement in it. Each environment

has its own Inlcude statement text file that stays in the environment. The QVW will load

in the include file that exists in its directory, thereby always getting the proper variable

set for its environment.

Variables can also be used to store common expression (metric) logic and used across many

QlikView documents. The expression logic can be stored in Excel, a flat file, or in a database.

Best Practices Guidelines: Development

The sample below shows some expressions stored in an Excel file related to Physician metrics.

These variables are then read into QVW files using a simple LOAD statement and then

converted to variables using this logic below:

Once this is done the variables can be used in any expressions in the QVW. An example of the

expression logic to utilize the variable is shown below.

This method allows for central management of the logic in metrics. You can simply change and

test logic enhancements in a spreadsheet or database and then allow the QVWs to reload the

logic the next time they are triggered for reload.

Best Practices Guidelines: Development

Macros
The following are some reflections you should be aware of when you start including macro

statements in your application.

Running a macro automatically deletes all caches, undo-layout buffers and undo logical

operation buffers and this in general has a very large negative im-pact on performance as

experienced by the clients. The reason for deleting the caches etc. is that it is possible to modify

properties, selections from the mac-ros, thus opening up for conflicts between the cached state

and the state that was modified from a macro and these conflicts will practically always crash or

hang the clients (and in worst case; hang or crash the server as well).

The macros themselves are executed at VBS level while QlikView in gen-eral is executed at

assembler level which is thousands of times faster by de-fault. Furthermore, the macros are

single threaded synchronous as opposed to QlikView that is asynchronous and heavily threaded

and this causes the macros to effectively interrupt all calculations in QlikView until finished and

thereafter QlikView has to resume all interrupted calculations which is a delicate process and

very much a source (at least historically) for deadlocks (i.e. QlikView freezes while the macro is

still running, without any possibility that the macro will be finished).

While QlikView is increasingly optimized in terms of performance and sta-bility, the macros will

always maintain their poor performance and the gap be-tween genuine QlikView functionality

and the macros will continue to in-crease, making macros less and less desirable from a

performance point of view. This fact combined with the above fact that the macros tend to

under-mine all optimizations made in QlikView calls for severe negative tradeoffs as soon as

macros become an integral part of any larger application.

The macros are of secondary nature when it comes to QlikView functional-ity - first all internal

basic QlikView functions are run and tested and thereafter the macros are run and tested which

effectively means that macros will never have the same status or priority as basic QlikView

functionality - always con-sider macros as a last resort but nothing much else. Since the

automation API reflects the basic QlikView in terms of object properties etc., the macro content

may actually change between versions making this a very common area for migration issues.

Once a macro is incorporated in an application, this applica-tion has to be revisited with each

new version in order to make sure that the macros were not affected by any structural changes

in QlikView and this makes macros extremely heavy in terms of maintenance.

Only a subset of macros will work in a server environment with thin clients (Java, Ajax) since

local operations (copy to clipboard, export, print etc.) are not supported, though some of these

have a server-side equivalent (e.g. Server-SideExport etc.) that is very expensive in terms of

performance with each cli-ent effectively affecting the server performance in a negative way.

In conclusion: what we are striving for is a heightened awareness when it comes to macros and

what may work with a few thousand records does not necessarily scale very well when macros

are involved and the problems tends to manifest themselves and become more serious when

Best Practices Guidelines: Development

larger datasets are in-volved. It is also important to note that certain events can only be

captured through the use of macros and for this reason it may be difficult to avoid mac-ros

altogether. The R&D department always strives to incorporate as much of this functionality as

possible as basic QlikView functionality, thus limiting the use of macros in the long run –

however as previously stated: certain events are difficult to catch except from an outside

macro…

Given all of the above, macros cannot be part of any recommended QlikView design pattern!

Actions
Action is a new entity in QlikView 9. They are derived from the old button shortcuts, which they

also replace. Apart from offering a much wider range of operations than the old shortcuts

(including most common operations on sheets, sheet objects, fields and variables), you may

also define a series of operations within a single action. The introduction of actions should

greatly reduce the need for macros, which is good since macros are never efficient from a

performance point-of-view.

The new actions can not only be used on buttons. Also text objects, line/arrow objects and

gauge charts can be given actions, which are executed when clicking on the sheet object in

question.

The trigger macros of previous versions of QlikView have been replaced by trigger actions.

This gives you the possibility to build quite elaborate triggers without the use of macros. Trigger

macros from previous versions will be automatically translated to a RunMacro action when

loaded into QlikView.

Read more about Triggers in the QlikView Reference Manual.

Best Practices Guidelines: Development

Project Management

Overview
The recommendations in this section are intended to be explored and decided upon
before the project starts, not during the implementation phase.

SCRUM Methodology works well with QlikView. Some important factors are

• Since QlikView projects are very rapid, SCRUM’s methods of frequent project meetings

work well with QlikView development

• A Notification method must be set up between concurrent developers when one of them

are changing shared objects

• Define Processes for:

• QA

� What denotes an ‘Error’ when performing QA?

• Incorrect data/totals are errors

• Incorrect labels/descriptions are errors

� What denotes an ‘Enhancement’?

• Changes to the layout (adding, changing items) are

enhancements if the item/sheet already passed the initial

acceptance by the end user

� *It’s important to denote between Errors and Enhancements because

Errors must be fixed, Enhancements must get approved before they are

implemented. We try to stay away from enhancements during QA since it

may require us to re-QA a lot of work.

• Change Requests

� What should we do when a user asks to change items? When do we

have to ask permissions?

• Communication and Execution plan

• When will the key stakeholders meet to go over scope changes, or enhancement

requests?

DSDM methodology

• Based on RAD methodology

• One of the Agile methods; part of the Agile Alliance

• Similar to SCRUM in process and concept, HOWEVER:

– Less jargon than SCRUM

– No education into SCRUM roles and titles

– Fewer documents required
• Globally recognized Agile RAD methodology

• Iterative and incremental

• Emphasis on continuous user involvement

Best Practices Guidelines: Development

• Focus on “on time, on budget” time-boxed, scope consciousness

• Adjustments for changing requirements built in to schedule

• Easily folded into over-arching customer projects and PMO’s

• “Plain language” project effort, roles, and documentation.

• Cyclical back to additional sales & revenue opportunities

RAD/DSDM Methodology

• RAD = Rapid Application Deployment

• DSDM = Dynamic Systems Development Method

– RAD and DSDM methodologies highly recognized in North America and Europe

as part of Agile Project Management Alliance

– RAD and DSDM methodologies fit the typical QlikView project profile with

minimal modification

– RAD and DSDM methodologies can be referenced and researched to aide

project governance and templates

– RAD and DSDM methodologies provide a foundation for knowledge transfers

– RAD and DSDM methodologies are resource requirement and documentation

lean yet complete

RAD/DSDM Elements
Project Phases 3 Phases:

• Pre-project

• Project Development Life-cycle

• Post-project

Project Team Resource Roles 6 Roles

• Project Owner/Sponsor

• Technical Analyst

• Project Manager/Business Analyst

• Expert Services Consultant

• QlikView Service Partner Developer

• Customer Project Team

Documents Required 8 Documents

• Project Charter with Scope

• Requirements: Business, Functional,

Non-functional, Technical

• Test Plan & Summary

• Project Schedule & Plan

• Design & Development Summary

• Knowledge Transfer & Support

Summary

• Team Post-project Interview

Summary

• Customer Satisfaction Interview

Summary

Best Practices Guidelines: Development

Engagement Document “Project Charter”

Single Document with tables

Documentation:

• Charter Purpose, Executive

Summary, Project Overview, Scope

with goals, objectives, and

deliverables, Conditions with

assumptions, communication plan,

issue tracker, risk tracker,

constraints, and escalation path,

Structured Approach, Team

Organization Plan, Team Contact

Directory

• Appendix Documents: project

schedule (spreadsheet), SOW,

change requests, milestone

summaries (requirements, design &

develop, test, deployment)

Project Schedule Excel spreadsheet exportable to MS

Project, et al project management software,

based on MS Project formats

Best Practices Guidelines: Development

Shown below is a sample project plan for a QlikView project. QlikTech recommends that a

project plan be created and followed for QlikView projects, and that the help of a qualified

Project Manager be sought out for larger projects. Many more templates and samples are

available via QlikTech Expert Services or online through QlikCommunity.

Best Practices Guidelines: Development

Security (Section Access)
Section Access can be set up in the QlikView script to handle security. It is contained within the

.qvw file, meaning the one single file can be made to hold the data for a number of users or user

groups. QlikView will use the information in the Section Access for Authentication and

Authorization and dynamically reduce the data, so that a user only sees data that he/she is

allowed to.

QlikView provides the following access levels:

ADMIN - can change everything in the document. Using the Security page in the

Document Properties and Sheet Properties dialogs, a person with ADMIN access can

limit the users’ possibilities of modifying the document.

USER - cannot access the Security pages.

NONE - optionally used for clarity, always treated as “no access”.

While QlikView Publisher can use its “loop and reduce” functionality to reduce a QVW by rows

by user or group as it is being reloaded, you can also accomplish this in Section Access

dynamically as the document is opened. Either method will work, and both have benefits.

The Loop and reduce from Publisher will help you to reduce the memory footprint of the QVWs

on your server(s), while the Section Access method is portable with the document. Another

reason to use Section Access is the application of authentication in the QVW, through a userID,

password or both. This is especially important if the QVW is going to be enabled for download

from the AccessPoint or otherwise distributed to users.

QlikTech recommends that QVWs that will be distributed should be password protected, or at

least validated against a userID with Section Access.

Best Practices when using Section Access:
• In Section Access, always use the Upper() function when utilizing a load statement, use it

on every column no matter what. (even when reading from .qvd)

• AD Groups for security

• Security in include files

• Add the Publisher’s service account to the Section Access table

• Utilizing a ‘Star Schema’ design for the data model with NO LINK Tables. Link tables hurt

performance greatly!

• Best case is to have 1 fact table with the dimensions all directly connected to the fact. In

rare instances should additional ‘snowflaked’ dimensions be used.

• In the fact tables, have no more than 30 – 40 columns defined. (there can be a few

more/less, but do not have 150 columns unless you fact is less than 10 Million records

(with a decent server)

• Many times having too many columns are a situation brought on by utilizing ‘Role

Playing Metrics’. While this may be helpful, too many of these metrics create a

performance degredation on the server.

Best Practices Guidelines: Development

Optimization
Overview
When the development phase on an application is complete and the deployment phase begins,
it’s very important to consider the best practices for optimizing the application’s footprint so that
the end user experience is smooth and seamless. This section discusses the best practices
optimizing data and the handling of expressions.

Data Load
After the load, drop any unnecessary fields. An unnecessary filed is one which isn’t currently

used in charts, list boxes, etc. Something which isn’t currently being used. There are utility

QlikView applications available on QlikCommunity that will identify the unused columns in your

QVW and even generate the DROP statements needed to eliminate them from your data model.

A screenshot of the UnsedFields.QVW is shown below. This QVW is available on

QlikCommunity for download and free use.

Best Practices Guidelines: Development

• If your data is huge, decide to break it up into multiple timeframes. For example: Have a

“This year vs Last year” QVW, a second which has 5 years data (or more), since most

people want to see this year vs. last year. (if that is the case). Note: this also results in a

much faster end user experience. Let’s assume that you discover that 80% of your users

only look at the last 13 months of data, yet your QVW holds 60 months of data. If you

create two versions of the QVW (one that holds only the last 13 months and another that

holds all 60 months) you can allow users to first analyze the 13-month version of the

QVW and then link to the other version only when needed. This will result in 80% of your

end user sessions consuming a fraction of the RAM, CPU and processing time that they

had before you split the application. This makes your end users’ experience better and

stretches your hardware further.

• Don’t normalize data too much. Plan for 6 – 10 total tables in a typical QlikView

application. This is just a guideline, but there is a balance to be struck with QlikView data

models. See the Data Model section of this document for more details.

• Eliminate small “leaf” tables by using Mapping Load to roll code values into other

dimensions or fact tables.

• Eliminate Count(Distinct x)’s They are very slow

• Eliminate Count Numbers, or Count Texts, they are almost as slow as Count(Distinct)

• Store anything possible as a number instead of a string

• De-normalize tables with small numbers of fields

• Use integers to join tables together

• Only allow 1 level of snow flaked dimensions from the fact record. (fact, dimension,

snowflake, none)

• Use Autonumber when appropriate

• Use Incremental Load template to load incrementally and break the historical .qvd files

into individual .qvds based on the incremental timeframe

• Always use relative paths when referencing for files

Best Practices Guidelines: Development

• Use UNC names, or automated tasks might not be able to reference the paths

• Local User Preferences in an include file

• Include files for connections

• Split timestamp into date and time fields when date and time is needed

• Remove time from date by floor() or by date(date#(..)) when time is not needed

• Reduce wide concatenated key fields via autonumber(), when all related tables are

processed in one script

• (There is no advantage when transforming alphanumeric fields, when string and

the resulting numeric field have the same length)

• Use numeric fields in logical functions (string comparisons are slower)

• (a – b) / b better: (a / b) – 1

• date(max(SDATE,'DD.MM.YYYY')) is factor xxx faster than

max(date(SDATE,’DD.MM.YYYY’))

• Is the granularity of the source data needed for analysis? “sum() group by”

• Use numeric flags (e.g. with 1 or 0) , which are pre-calculated in the script

• sum(Flag * Amount) vs. sum(if(Flag, Amount))

• Reduce the amount of open chart objects

• Calculate measures within the script (model size <> online performance)

• Limit the amount of expressions within chart/pivot objects, distribute them in multiple

objects (use auto minimize)

• De-activate Hyperthreading within server BIOS; Hyperthreading (only Intel-CPUs) can

slow down script processing

• Be very carefully using Macros!

Best Practices Guidelines: Development

• For very large QVWs you can further optimize by pre-caching selections in RAM.

QlikView stores a result of a regular formula calculation within diagrams into the shared

cache memory. The same user or also another user fetches the result from the cache

when the formula and the filters are the same, i.e. the result is delivered instantly without

any processing. The cache entries remain in the assigned cache memory till the QV-

model is reloaded e.g. after an update. This means that the first users after a reload

have to accept waiting time, because the cache is empty. This issued can be solved via

a Visual Basic script (VBS) which simulates user selections in the application and which

can be started automatically (via an external execution task in Publisher) after the

update of the data model.

This VBS sample below runs through all folders of the application, opens all diagrams

and selects all fields in the dimension Region

Best Practices Guidelines: Development

1. Use Calculation Condition expressions to limit the calculation of very

it’s not relevant. The calculation of diagram objects

formulas – can cause a significant system load and hence some waiting time, when no

filter is set. It can make sense forcing the user to select a yea

region or all of these dimensions before the calculation of the diagram objects starts.

2. Utilize variables and/or Set Analysis instead of complex data calculations in expressions.

Using time functions within expression (1

longer compared to a simple comparison (4 below) or to Set Analysis (5 below).

 1. sum(if(inmonth (Date,date(max(total Date)),

 2. sum(inmonth (Date,date(max(total Date)),

 3. sum(if(inmonth (Date, vPYMonthEnd,0), Sales))

 4. sum(if(Date>= vPYMonthStart and Date <= vPYMonthEnd,

 5. sum({$<Date={“>=$(vPYMonthStart) <= $(vPYMonthEnd)”}>}

These optimization best practices are demonstrated and practiced in the QlikView Developer

and Designer training courses. QlikTech strongly urges clients to take advantage of this

training in order to optimize QlikView deployments and maximize the ret

can realize with QlikView.

Guidelines: Development

Use Calculation Condition expressions to limit the calculation of very

The calculation of diagram objects – especially with many complex

can cause a significant system load and hence some waiting time, when no

filter is set. It can make sense forcing the user to select a year, a product category or a

region or all of these dimensions before the calculation of the diagram objects starts.

Utilize variables and/or Set Analysis instead of complex data calculations in expressions.

Using time functions within expression (1-3 below) results in waiting time 3

longer compared to a simple comparison (4 below) or to Set Analysis (5 below).

1. sum(if(inmonth (Date,date(max(total Date)),-12), Sales))

inmonth (Date,date(max(total Date)),-12) * -1 * Sales)

3. sum(if(inmonth (Date, vPYMonthEnd,0), Sales))

4. sum(if(Date>= vPYMonthStart and Date <= vPYMonthEnd,

5. sum({$<Date={“>=$(vPYMonthStart) <= $(vPYMonthEnd)”}>}

These optimization best practices are demonstrated and practiced in the QlikView Developer

and Designer training courses. QlikTech strongly urges clients to take advantage of this

training in order to optimize QlikView deployments and maximize the return on investment they

Use Calculation Condition expressions to limit the calculation of very large tables when

especially with many complex

can cause a significant system load and hence some waiting time, when no

r, a product category or a

region or all of these dimensions before the calculation of the diagram objects starts.

Utilize variables and/or Set Analysis instead of complex data calculations in expressions.

below) results in waiting time 3-15 times

longer compared to a simple comparison (4 below) or to Set Analysis (5 below).

Sales))

Sales)

These optimization best practices are demonstrated and practiced in the QlikView Developer

and Designer training courses. QlikTech strongly urges clients to take advantage of this

urn on investment they

Best Practices Guidelines: Development

Code Management & Migration Guidelines

Code Management
In order to provide an overview of Code Management best practices, it’s helpful to look at a

fictitious case study that examines a QlikView application change process for a company. The

fictitious company’s name is Acme Industries.

Report: Acme Industries’ Change Request Guide

Changing the QlikView App –Release Process

We expect that end users will have enhancement requests and/or defect reports for the

QlikView application. We will manage such change requests using standard Acme Industries’

software change management procedures where possible.

Several change requests can be implemented and rolled up into a new release. The frequency

of new releases is not yet determined, but once the application is stabilized, new releases are

more likely to be a quarterly or monthly event, rather than a daily event.

Opening a Change Request

The change request should first be entered into Acme Industries change request tool or bug

tracking system. The change request should then be prioritized by the QlikView Project

Manager. As more change requests come in, the Project Manager assigns the highest priority

change requests to a QlikView Developer for implementation.

Implementing a Change Request

1. Check-out of QVW File (s)

The QlikView Developer then checks the appropriate QVW file(s) from Acme Industry’s

revision control tool. (Alternatively, instead of checking out the QVW file(s), the script and

layout files can be exported from the QVW(s) via QlikView Developer for management by the

preferred revision control tool).

Best Practices Guidelines: Development

2. Changing the QlikView application

The QlikView application developer now extends and/or repairs the QlikView application, using

skills from the QlikView Designer and Developer courses. The QlikView application can be

modified and extended locally on a developer’s desktop, or remotely on the test server. The

following table compares the two different approaches:

Development

Location

Desktop Software

Required

Server Software

Required

Notes

Locally on Desktop QlikView Desktop n/a Server-based

development is useful

for

larger data volumes.

Remotely on Test

Server

Windows Remote

Desktop Connection

Client

QlikView Desktop

Typically, it is good practice to use separate hosts for test and production purposes for large

deployments. However, one machine can serve in both roles if need be, especially in smaller

deployments. In the case of one machine serving in both roles, test and production files can be

stored in separate directory trees, and the systems administrator can control access to the

production directory tree using Windows NTFS file permissions. The rest of this document

discusses the use of separate test and production hosts; however, the same concepts could be

applied when using separate test and production directory trees on a single machine.

3. Test Deployment on Test Server

The QlikView developer now copies the updated QVW file to the test server’s QlikView

server folder and validates that the application works as desired when accessed by the

preferred client type (ex QlikView’s Internet Explorer plug-in).

4. Test Reload on Production Server

The QlikView developer works with the server administrator to validate that the updated QVW

file can reload data successfully on the production server. This test is especially critical if the

QlikView developer has added calls to any new data sources in the updated QVW file, as those

data sources might not be available from the production environment.

Best Practices Guidelines: Development

5. Data Reduction before Check-In

In software development, the goal of a revision control system is to control changes to software

application artifacts themselves, and not to the data processed by the application. As such,

before checking in the new version of the QVW file(s), all data should be removed from the

QVW files, via the QlikView Desktop File > Reduce Date > Remove All Values command.

This will reduce the size of the QVW file from about 2 MB down to 200 kb. We are not worried

about checking in this file with no data, as the QVW file will be re-populated with data after

being deployed to the production server, when its load script is run.

This step is only relevant if Acme is performing revision control on the QVW file(s); it is not

relevant when using the alternative approach of performing revision control on the script and

layout files.

6. Check-In and Deployment

The developer should check in the updated, reduced QVW file to the revision control system,

and then alert the system administrator to the availability of the updated file. The system

administrator then copies the updated QVW file(s) to the Production directory on the server.

If Acme is using the alternative approach of performing revision control on the layout and script

files (instead of the QVW), then the developer should check in the modified script and layout

files, and the system administrator would then import those updated script and layout files into

the production QVW files.

Closing the Change Request

The change request should be marked as closed in the Acme Industries change request tool or

bug tracking system.

This concludes the typical report on implementing a change control solution for QlikVIew.

Best Practices Guidelines: Development

Migration Guidelines

This section describes the migration path of changes to production QlikView documents from

the developer and professional users into production. This will need to be a coordinated effort

between several people to make the process work correctly.

Following is a discussion of the various roles that are used in this section:

Roles

Role Responsibilities

Administrator Publisher nightly jobs (Creating, modifying,
maintaining)
Acting as a gateway for changes (source
control)
Integrating New changes from
Developers/Professional users into Production

Developer

This is generally a person who develops the
data model and works with the source systems

Professional User

This is generally a person who
creates/modifies the charts/reportsand layout

QA User This is the end user who helps define report
requirements and are the final validation that
the reports are correct. This could be the
developer or a person outside of the
development team.

Best Practices Guidelines: Development

Definitions

Document : A QlikView QVW file. AKA ‘QVW’

Production Candidate: A document which has all of the latest changes applied to it. This is

generally a document which is in the hands of the administrator. It’s the administrators

responsibility to keep track of which document is the production candidate and there should only

be one production candidate per document at any time.

Definitions of changes

Changes would include anything which requires a developer to open the document, edit it and

save the changes. This includes changes in layout (moving things around), changing colors,

adding/modifying properties on anything (list boxes, charts, graphics, etc), changes in scripting,

cycle and drill groups, macro code.

This reference of changes do not include updating the data nightly through an automated

process (such as publisher)

Overview

The basic process is that a developer will make a few changes to the layout of the document

and want to merge those changes into production. Once the developer has verified the changes

are correct, they will notify the administrator. The administrator will integrate the changes from

the developer (and possibly multiple developers) and put the document in QA for the developer

to review.

If the developer and end user has verified the document is correct, then the administrator can

move the changes into production.

If a large number of changes are occurring, the administrator may (in coordination with the all

parties involved) develop a release schedule and release many changes at once.

End User Communication Process

A Process will need to be developed to notify end users users that new features are available in

a specific application. In other words, this should be a process to notify the end users that new

features are available once the development has been finished and the application is promoted

to production. This could vary depending on the size of the change. If it’s a simple new report,

then no notification may be necessary. If it’s a change to a report which is used all of the time

by many people, then you may want to notify everyone with email or have a training session

with the changes.

Release Strategy

If there will be several changes from multiple developers going into production on the same

document, then a release strategy should be developed to coordinate the changes to minimize

the number of promotions to production and additional overhead of promoting new features to

production (QA, administrative time to merge changes, possible chance for errors during

promotion, etc)

Best Practices Guidelines: Development

Details for Developers

These details are the general steps each developer would take to develop new changes and

have them added to production.

Once a developer receives a request to develop a change to a production document there are 2

ways to proceed:

1. If there are a large number of changes which affect a large number of areas of the

document

a) The developer or professional user would contact the administrator and request the

most current version of the document be given to the developer for exclusive access.

b) The developer would make the changes by

i. Copying the document which the administrator gives you to your working

directory

ii. Making the changes to the document

iii. Copying the new document to the e:\QlikView Development Server Directory

using the appropriate name (See the “Development Processes.doc”) to allow

QA users to validate the changes.

iv. When the QA users have validated the changes, return the document to the

administrator with

i. 1. A general list of changes. (An all-inclusive list of changes wouldn’t

be necessary since the administrator would take the document from

the developer, validate some standards (See Details for Administrator

Section of this document) and put the document directly into

production.)

ii. 2. A list of QA users who should QA the document once it’s placed

into the QA directory. The administrator will grant access to the

document for the specific list of QA users.

v. The administrator would put the document into production after some basic

checking that the application work correctly in the production environment

and that the proper standards are being met (script isn’t broken, all of the

reports work correctly)

2. If there are small changes, or the changes are limited to a specific subset of the

document

a. The developer would copy a version of the document from the “E:\QlikView Copy

of Production” to their working directory and develop changes. It’s very important

to keep a list of all of the changes which were made.

b. The developer must copy the document to the directory “e:\QlikView

Development Server Directory” (On the Development Server) using the

appropriate name (See the “Development Processes.doc”) and allow QA users to

validate the changes.

c. At this point the QA user would validate the changes and the developer would

notify the administrator of

Best Practices Guidelines: Development

i. Where the document is located

ii. The name of the document (exact file name)

iii. Changes the administrator would need to merge into production

iv. Which users should see the document once it’s placed into QA

d. The administrator would merge the changes of one or more developer’s changes

into a production build; place the build in the “E:\QlikView QA Server Directory”

for QA by the developer and QA users and notify the developers and QA users of

the name of the document and that it’s ready for QA (The name could be

different than what the developer had originally since the administrator may have

merged in changes from several developers)

e. Once the developer (and optionally the QA user) has had time to QA the

document, the administrator would promote it into production

Details for Administrator

Your role will encompass keeping the production environment organized and also to merge new

changes into production. These changes include changes to script, reports and Publisher jobs.

To perform this role, you will need to have a firm grasp on all of the QlikView products since you

will be managing the flow of data through all of them.

General principles for all tasks

• Traditional SDLC practices should apply where the development process goes through a

Development – QA – Production sequence to promote changes to production. Since

QlikView doesn’t have features for showing the difference between 2 different

documents, comparing changes and promoting changes to production is a manual

process.

• When merging in new changes from developers you’ll need to make sure you keep track

of which document has all of your most recent changes and merge developer’s changes

into that most recent document.

• You will need to avoid having multiple versions of the same document in QA at the same

time. The reason for this is that if you have multiple versions of the same document in

QA then when you migrate the changes to production you will have to re-merge the

changes which means you need to change things which means additional QA (since

changes could affect other changes)

Admin Responsibilities

• Coordinate changes into production

• Fix system problems

• Operate with good software design principles (backups, quality checks, etc)

• Enforce coding standards/practices

Best Practices Guidelines: Development

• Coach developers as to design principals to promote a better system

• Monitoring/tuning the QlikView Server

• Monitor changes to security groups

• Managing User CALs

• Raising issues with navigation (although they could be overruled if there is a business

need)

Admin Responsibilities do not include

• Validating the numbers/data for accuracy

• Managing the QlikView projects

• Deciding what ‘looks’ good

Merging in new Reports (Layout changes):

When a developer notifies you of changes they should provide you with

• A location and name of the document which has the changes for you to promote to

production

• A list of the changes. These changes could include

o Layout objects (Graphs, reports, list boxes, etc)

o Variables which the reports reference

o Cycle and Drill objects

• A list of people who will QA the document

The process is to have a production candidate version of the document which you will work with

and the newly enhanced document which the developer gave you (possibly multiple developers)

• The admin would go through the list of changes and move the changes to the new

production candidate Many times this can be a simple copy/past of the new object to the

production candidate and deleting the old object.

• Once you migrate the changes to the new document you will need to validate that it

looks correct.

• Check all fields – In charts and graphs, you’ll want to check all fields to make sure they

exist in the production candidate. Any fields which don’t exist will generally turn red, or

have a red X next to them in the chart properties (if it’s a chart).

• Check all expressions (expressions everywhere, not just in the expression tab)

• Check that they are valid

• Check that they are efficient (additional data model changes may be necessary if the

expressions could be made to be more efficient)

• Drill/cycle groups – There is no way to copy/paste these, they will need to be rebuilt.

Also look at the sort order in the groups, the sort order could be important to the

developer

• Possibly any other supporting architecture such as Island Tables, new fields, etc.

Best Practices Guidelines: Development

Merging in new Script:

• Identify the new script and validate the script is going to work with the coding standards

which have been adopted.

• Make sure it executes correctly.

• Merge the new script into the existing script. It may be possible to merge the new script

with some existing script to improve efficiency instead of continually adding new script to

the document

Modifications to Publisher:

Users won’t be giving you actual publisher items to move into production. Instead, publisher

changes will come with the requirements of other enhancements.

For example, if a new request is made to reload data on a new schedule, that would be a

publisher change which would need to be executed. If a new script module was added which

utilized additional documents, publisher would have to be adjusted to accommodate the

additional documents.

Publisher changes will be up to your discretion as to what needs to be accomplished and what

timing they need to be accomplished. There are a couple of guidelines which you’ll want to

follow though:

• Don’t ‘Distribute’ large documents to the QlikView Server Resource during times when

users are utilizing the system. Doing this will slow the QlikView Servers dramatically

Small documents (which take 30 seconds or less) are fine.

• When validating new data model changes (script changes and such), it’s best to develop

the publisher jobs and let them execute from publisher to validate that the data

movement is occurring as it should. Without doing this, you won’t know if publisher has

the proper permissions and such defined to execute the jobs in their actual production

environment

Best Practices Guidelines: Development

Development Process

Best Practices Guidelines: Development

Naming Standards

Publisher
• It’s generally considered bad practice to put the time of an action (I.E. ‘Daily’, ‘Nightly’) in

the task’s name since that task can be scheduled by many different jobs which all can be

scheduled differently

• It’s generally considered good practice to put the time of an action in a Job’s name.

• If you have a mixed QA/Dev environment, you will want to prefix anything (Except for an

individual .qvw) with either a Dev_ or QA_ Production would either have a Prod_ prefix,

or no prefix (your choice as long as everyone follows the same standards)

• Always use log files for any application promoted to production. Without log files,

publisher can’t capture the details of the success/failure of an application’s execution

• Use UNC names, or automated tasks might not be able to reference the paths

Abbr. Abbr. Type Meaning

All Environment Applicable to all environments

DEV Environment Development Environment

PRD Environment Production Environment

TST Environment Test Environment

APR Publisher Item Publisher Access Point Resource

JOB Publisher Item Publisher Job

SDF Publisher Item

Publisher Source Document Folder

Resource

TSK Publisher Item Publisher task

DSR Publisher Item Directory Service Resource

Scripting and Layout
Come up with a naming standard:

• Use business names for data fields e.g., Customer Nbr instead of CustNo

• All abbreviations are a standard type. Get a list of abbreviations and use it (I.E. always

use Desc for Description, as specified in the abbreviations list)

• Utilize a Prefix

- Variables = starts with a ”v” e.g., vCurrentYear

- Key fields = starts with a ”%” e.g., %CustomerKey

- Flag fields = starts with a ”_” e.g., _YTDFlag

- / Cycle Group = starts with a ”<” e.g., <ProductCycle

- Drilldown Group = starts with a ”>” e.g., >GeographyDrilldown

- Key Field Separator = separated by “_” e.g., Company&'_'&Nbr as

Key

- Temp Fields/Tables = ends with "_tmp” e.g., Daily_Trans_tmp

Best Practices Guidelines: Development

Folder Structures

Overview
Folders to hold your production QlikView files are also important. The structure of your folders

should allow developers to easily locate and read the files for which they have access. Below

are some strategies for the location of QlikView files.

Department Breakdown

This strategy is to separate the files into folders for specific subject areas under the environment

folders, including a Common folder to hold all files that are candidates to be used across subject

areas. This is a good strategy for established deployments that don’t have many new

development projects running at any given time. It can be less desirable if many new

development projects are running, since there are not project-specific folders in this strategy.

That means new development files that may or may not be in Production will be present in the

Dev/Test/QA folders mixed in with established Production files.

Best Practices Guidelines: Development

Project Breakdown

This strategy is common where several development projects are running concurrently. It

houses the files specific to a project within a folder named for the project. This makes it easy

for developers and administrators to quickly identify new files rel

them for testing and code promotion. Once files make it to Production they are all housed

under the “Shared” folder since there are no development projects in Production.

Application Breakdown

This strategy is common where

each other in file use. Separating the files by application makes it easier to identify files needed

for enhancements or additions to an application. Note that there is still a Shared fold

house all files which are common to more than one of the applications. Over time, this

approach may be less desirable if more and more common files are used.

Mixed Breakdown

This strategy mixes the Department Breakdown with either the Pr

Application Breakdown. The picture above shows the Department/Application combination for

demonstration purposes. This approach is common for larger QlikView deployments where

several departments are developing applications that

It’s important to note that any approach above or combination of approaches will work, but

consistency is the key to folder strategy. You can, of course, switch strategies as your

QlikView deployment grows, but re

in order to maintain control and

Folder Security
This is an example how to secure your QlikView Source files. There are many ways to do this,

but as a best practice QlikTech recommends that you incorporate a security strategy that

matches your development strategy. This will allow you to isolate dev

people that shouldn’t access them, while still allowing them

access to shared files that allow for re

Use different groups to match your source data file

structure.

A) Department1/Development group 1

B) Department2/Development group 2

C) Shared company data (Shared_Folders)

D) QlikView Administrator has access to all

distributed documents

E) Service Account for QlikView service, are

group D

This service must have read access to

file system and Active Directory

Guidelines: Development

This strategy is common where several development projects are running concurrently. It

houses the files specific to a project within a folder named for the project. This makes it easy

for developers and administrators to quickly identify new files related to a project and isolate

them for testing and code promotion. Once files make it to Production they are all housed

under the “Shared” folder since there are no development projects in Production.

This strategy is common where large QlikView applications exist which do not greatly overlap

each other in file use. Separating the files by application makes it easier to identify files needed

for enhancements or additions to an application. Note that there is still a Shared fold

house all files which are common to more than one of the applications. Over time, this

approach may be less desirable if more and more common files are used.

This strategy mixes the Department Breakdown with either the Project Breakdown or the

Application Breakdown. The picture above shows the Department/Application combination for

demonstration purposes. This approach is common for larger QlikView deployments where

several departments are developing applications that may not overlap each other greatly.

It’s important to note that any approach above or combination of approaches will work, but

consistency is the key to folder strategy. You can, of course, switch strategies as your

QlikView deployment grows, but remain consistent and vigilant within the strategy you are using

in order to maintain control and governance over code management and deployment.

This is an example how to secure your QlikView Source files. There are many ways to do this,

but as a best practice QlikTech recommends that you incorporate a security strategy that

matches your development strategy. This will allow you to isolate development files from

people that shouldn’t access them, while still allowing them

access to shared files that allow for re-use and consistency.

Use different groups to match your source data file

Development group 1

Development group 2

data (Shared_Folders)

has access to all groups and

) Service Account for QlikView service, are member of

access to databases,

system and Active Directory

This strategy is common where several development projects are running concurrently. It

houses the files specific to a project within a folder named for the project. This makes it easy

ated to a project and isolate

them for testing and code promotion. Once files make it to Production they are all housed

under the “Shared” folder since there are no development projects in Production.

large QlikView applications exist which do not greatly overlap

each other in file use. Separating the files by application makes it easier to identify files needed

for enhancements or additions to an application. Note that there is still a Shared folder that will

house all files which are common to more than one of the applications. Over time, this

approach may be less desirable if more and more common files are used.

oject Breakdown or the

Application Breakdown. The picture above shows the Department/Application combination for

demonstration purposes. This approach is common for larger QlikView deployments where

may not overlap each other greatly.

It’s important to note that any approach above or combination of approaches will work, but

consistency is the key to folder strategy. You can, of course, switch strategies as your

the strategy you are using

governance over code management and deployment.

This is an example how to secure your QlikView Source files. There are many ways to do this,

but as a best practice QlikTech recommends that you incorporate a security strategy that

elopment files from

Best Practices Guidelines: Development

Testing & Certification

Tests to Perform

1. Reload Testing

a) Reload locally

b) Reload from QVS (manually)

c) Reload automated from an isolated Publisher task

2. Publisher Testing

a) Test tasks individually for reload, distribution, statuses

b) Build dependencies (if needed) and test individually

3. User Testing (UI)

a) Individual user testing

b) Private bookmarks

c) Exports (all formats)

d) Concurrent user testing (unstructured)

e) Concurrent user testing (simultaneous function testing)

f) Concurrency testing (multiple apps)

4. User Testing (Collaboration)

a) Testing new collaboration objects

b) Testing shared collaboration objects

c) Server Bookmarks

5. Performance Testing

Simultaneous tests of 10+ users on QVW

6. Regression Testing

If this is an enhancement to a QVW, perform a regression test using the test

cases from initial deployment of the QVW

7. Cycle Testing

Run 4-6 daily full cycle reloads to refresh the QVW from source to end user

interface

Environments

a. Single environment – local testing

This approach is used when a client only has one server (PROD) and as such,

needs to locally test code on developer machines until the code is ready for

production. This can be done with local unit testing on the developers’

Best Practices Guidelines: Development

machines, then a limited availability version of the QVW can be placed in PROD

to acceptance test. Once that version of the QVW has passed testing it can be

made available as the PROD version.

b. 2-Server environment – promotion

This approach involves performing all testing on the Dev/Test server and then,

once passed, the code is promoted to PROD. Unit testing can still be performed

locally by developers, but an official acceptance test should be performed on the

Dev/Test server once the developer has completed unit testing.

c. 3-Server environment – promotion

This is basically the same as the prior approach, except that DEV, TEST and

PROD are used. DEV is first used for unit testing. Then TEST is used for

acceptance testing, and once it passes tests the QVW is promoted to PROD.

End User Testing

1. Individual – Unstructured

These tests would be performed by end users at their convenience without

structured plans or directions as to what and how they would test. Individual

end users are simply granted access to the v9 Testing environment and told

to test anything they would like.

2. Individual – Structured

These tests would involve directions on what and how to test, but they would

not dictate when to test or coordinate the tests among user groups. They

would likely have directions indicating which QVWs to test and what functions

to test in a particular order. Results would be gathered to compare among

users that completed the tests.

3. Group – Unstructured

A group of end users are all granted access to the v9 Testing environment

and simultaneously test for a period of time. This might be conducted over a

series of n-hour time blocks or days, or could be one continuous test window.

The end users are not given structured directions on what and how to test,

but are simply told to test everything.

Best Practices Guidelines: Development

4. Group – Structured

A group of end users are all granted access to the v9 Testing environment

and simultaneously test for a period of time. This might be conducted over a

series of n-hour time blocks or days, or could be one continuous test window.

They are given specific directions on what and how to test. They are also

coordinated (preferably in the same room or over a conference call line) so

that they can perform concurrency tests to simultaneously initiate functions or

access documents. The results would be gathered to compare to similar

tests conducted in the 8.5 environment as a control.

Test Adoption
It can be difficult to gain access to end users’ time and effort for testing. Some of

these approaches can help to promote testing and ensure good results.

1. Coordinate test windows for users in advance. Let end users know that you will

have “test windows” where the environment will be monitored and you will be

available to help with any questions or needs. This helps ensure that their time

will not be wasted and they will not be waiting for help or guidance if needed.

2. Have a prize for the end user or group that discovers the largest amount of bugs

with the new version’s documents. This is a great motivator for end users and

will ensure that they stress test the QVW’s in a thorough manner.

3. Co-locate users for tests. Find a large conference room and have end users

come to that room for the testing. Training labs work well if users cannot bring

laptops.

4. Have users coordinated over the phone while testing. Have an open conference

line available during any test windows so that end users can converse with each

other, can ask questions, and can take direction for simultaneous testing events.

5. Give users a check list of documents to test or functions to test. Sometimes

users cannot remember all of the features available to them from within a QVW.

Give them a checklist that includes bookmarks, reports, exports, conditionally

visible objects, collaboration, etc…

6. Coordinate test windows for users in advance. Let end users know that you will

have “test windows” where the environment will be monitored and you will be

available to help with any questions or needs. This helps ensure that their time

will not be wasted and they will not be waiting for help or guidance if needed.

Best Practices Guidelines: Development

7. Have a prize for the end user or group that discovers the largest amount of bugs

with the new version’s documents. This is a great motivator for end users and

will ensure that they stress test the QVW’s in a thorough manner.

8. Co-locate users for tests. Find a large conference room and have end users

come to that room for the testing. Training labs work well if users cannot bring

laptops.

9. Have users coordinated over the phone while testing. Have an open conference

line available during any test windows so that end users can converse with each

other, can ask questions, and can take direction for simultaneous testing events.

10. Give users a check list of documents to test or functions to test. Sometimes

users cannot remember all of the features available to them from within a QVW.

Give them a checklist that includes bookmarks, reports, exports, conditionally

visible objects, collaboration, etc…

There are many ways to test code in QlikView. The two most important success factors

in effective testing have been:

1. Planning.

Have a plan for the testing that allows you to break up the QlikView

responsibilities and test them individually (development, reloading, publishing,

security, usage, monitoring, troubleshooting, etc…). Then, bring those

responsibilities together and cycle test them where possible. Document the test

plan and repeat the steps that can be repeated.

2. Time Commitment. Secure serious time commitment from developers, admins

and end users of QlikView. A common benchmark is that the testing should

involve at least 10% of the development time for a QVW. This means that if a

QVW took 160 hours to develop it should get 16 hours of testing time prior to its

promotion to Production. This could be 16 users for an hour each or any

combination of users and hours that total to 16 (or 10% of development time).

Make those hours count by giving some structured and some unstructured time

to the end users, as well as making sure they have some motivation to uncover

issues.

Best Practices Guidelines: Development

Workflows

QlikTech recommends the creation of a Development Workflow document that diagrams the

steps involved in code promotion throughout QlikView environments. The diagram below

shows an example of a development workflow:

Certification

Many companies benefit from the speed and flexibility of QlikView development, but also wish to

retain a more rigorous process for some QlikView development of very important or high profile

applications. In order to distinguish between “go fast” applications and “high rigor” applications

many QlikView clients use a Certification process.

This process serves as a tollgate to getting a QlikView application “certified”. Certification

means an application has gone through this process and been approved. A “Certified” icon is

then placed in the title section of the application so that users and support teams know which

Best Practices Guidelines: Development

applications are certified and which ones are not. This allows teams to place emphasis on this

process by not providing the same level of support for non-certified applications.

The diagram below shows what a sample Certification meeting might look like.

Best Practices Guidelines: Development

Troubleshooting & Support

Support Types
Supporting QlikView applications and environments can be done in several ways. As a

best practice, QlikTech recommends that support levels and services be identified for

the following areas:

- QlikView Applications (QVWs)

- QlikView Interface (end user support)

- QlikView Server/Publisher

- QlikView Data Architecture (QVDs and QlikView data, in general)

Many QlikView clients utilize certified QVWs for application support of high importance

apps. This can help especially when business teams are creating their own QVWs and

your support team is only responsible for supporting the certified applications that it had

a chance to code/interface/data review. See the section called Testing & Certification in

this document for more details on the certification process.

QlikView Development Teams
QlikView is an extremely flexible and easily adapted BI tool. As such, development teams can

organize around several models for support, administration, development, training and

management. These scenarios help guide discussions about possible configurations for

QlikView roles in a development environment.

It is recommended that the client consult its own IT standards for development, as they may

drive this decision, or at least narrow the allowed choices. QlikTech does not expressly promote

one of these scenarios over the others, but asks that clients determine for themselves which of

these configurations might work best, given the nature of the QlikView development and the

skills sets that exist.

Best Practices Guidelines: Development

On a continuum from Fully Centralized to Fully Decentralized, the following are 5 options for

QlikView team structures:

1) Fully Centralized

Central Team Distributed Team(s)

Infrastructure Support End Users

QlikView Administrators

QlikView Application Support

QlikView Developers

QlikView Designers

Project Managers

In this option, departments don’t need to supply developers, support personnel or administrators

to use QlikView applications. They request new applications and then consume them along with

central QlikView services. Strengths in this approach are control, skill set sharing, consistency

and governance, since all services are contained to one team.

Best Practices Guidelines: Development

2) Co-Development (v1)

Central Team Distributed Team(s)

Infrastructure Support End Users

QlikView Administrators QlikView Designers

QlikView Application Support Project Managers

QlikView Developers

In this option, enterprise development is retained as a central function, allowing for the scripting

and data modeling to be handled by expert QlikView developers and data professionals.

Departments are responsible for all training, project mgmt, application design, testing and

support.

The strengths of this approach are that the back-office BI work is still centralized, but the design

and project management are done in the business teams, so that they can move at a faster

pace, partially independent from IT resources.

Best Practices Guidelines: Development

3) Co-Development (v2)

Central Team Distributed Team(s)

Infrastructure Support End Users

QlikView Administrators QlikView Application Support

QlikView Developers QlikView Designers

 Project Managers

In this option, support has been moved to departments, but Project Mgmt is retained in the

central team to better allow for QlikView expertise and control of designs. Departments are

responsible for all training, application design, and support. Strengths of this approach are

similar to the v1 Co-Development model, with the exception of the QlikView Application Support

now also being distributed to the business teams. This frees up more IT resources and places

some responsibilities on the distributed teams to provide support and training to their end users.

Best Practices Guidelines: Development

4) Mostly Decentralized

Central Team Distributed Team(s)

Infrastructure Support End Users

QlikView Administrators QlikView Application Support

 QlikView Developers

 QlikView Designers

 Project Managers

In this option, departments are responsible for all training, project mgmt, application design,

scripting, development, testing and support. The Central team is still providing infrastructure

support and QlikView Administration. This allows for a small IT team (usually less than 2

people) to administer rights, server settings, and batch processing (reloads). Strengths of this

approach are that the Centralized (IT) team is very small.

Best Practices Guidelines: Development

5) Fully Decentralized

Central Team Distributed Team(s)

Infrastructure Support End Users

 QlikView Administrators

 QlikView Application Support

 QlikView Developers

 QlikView Designers

 Project Managers

In this option, infrastructure is still maintained centrally, but all other aspects of QlikView

development, testing, support, training a usage are distributed to departments. This requires

distributed teams to be trained on all aspects of QlikView. The strength of this option is that

there is no software-specific resource needed in a central team. However, the challenge of this

approach is that those software-specific resources will need to be present in several distributed

teams, possibly overlapping.

Choosing a development team structure is an important step in an enterprise deployment of

QlikView. While the Co-Development options (#2 & #3) are the most popular today, the right

option for each client is the one that matches their needs and strengths.

Best Practices Guidelines: Development

QlikView Centers of Excellence
QlikTech recommends that clients implementing enterprise deployments of QlikView strongly

consider the forming of a QlikView Center of Excellence (or Competency Center). This can be

as formal or informal as needed, but the services and synergies shared in a center of excellence

provide significant savings and coverage for enterprise deployments.

QlikView Center of Excellence (CoE)

Integrated by a mixed team from IT and business users, the QVCoE centralizes

organizational knowledge and best practices to standardize, implement, and manage

business intelligence solutions in the organization.

Objectives:

1. Develop and share QlikView best practices

Best Practices Guidelines: Development

2. Ensure functionality and operation of QlikView applications

3. Design and implement a common BI architecture

4. Promote the use of BI throughout the organization

Organization Structure

• Centralized or decentralized, depending on company culture, skill sets of teams

involved and policies

• Can be dedicated or virtual

• Should “think big” but start small

• Allow for and plan for growth of QlikView and company

Benefits

• Increase credibility and confidence in corporate information

• Rollout the use of BI for the whole company

• Accelerate decision making process

• Optimize resources and reduce costs

• Business process innovation through BI insights

• Continuously evolve QlikView BI applications to support changing business

requirements

Steps:

1. Executive Sponsor

2. COE mandate and objectives

3. Funding

4. Organizational structure/reporting lines

5. Functional areas

6. Required roles

7. COE KPIs

QlikTech can provide materials and templates to help you define the centralized services, KPIs,

structures and best practices for creating a QlikView Center of Excellence. This should be

sized and scoped to be commensurate with your QlikView deployment. Meaning, it can start

small and then grow as your QlikView deployment grows.

Best Practices Guidelines: Development

Training

An effective training strategy is essential in the creation, on-going upgrade or deployment of any

QlikView application. Whether you are about to embark on a small sales dashboard for a single

manager or a worldwide deployment of thousands of users, the training strategy will greatly

affect the success of the project and how people utilize the system to efficiently perform their

jobs.

The four key areas’ and their QlikView training offerings are listed below:

This role is responsible for developing and documenting the QlikView document

according to the specified requirements.

 Build Your First QlikView

 QlikView Developer 1

 QlikView Developer 2

 QlikView Developer 3

 Set Analysis

 SAP Connector

This role focuses on usability and develops the User Interface of the QlikView

document according to the requirements.

 Build Your First QlikView

 QlikView Designer 1

 QlikView Designer 2

This role is responsible for hardware, operating systems and job schedules.

 System Management – Overview

 Document Manager

 Enterprise Deployment

This role is a consumer of QlikView applications.

 QlikView Version for End Users

Best Practices Guidelines: Development

The following table shows the potential training for several roles, including those listed above:

QlikTech strongly recommends that clients attend Developer, Designer and Systems Admin

training for QlikView in order to maximize the return on investment in QlikView hardware and

software. The depth of courses to be taken will depend on the needs of your deployment.

Please consult your Regional Services Director at QlikTech or your Account Executive to

discuss options.

Best Practices Guidelines: Development

Summary
QlikView is a very fast and flexible BI solution. Although there are few moving parts (QVDs and

QVWs) to manage for development, there are endless combinations or resources, processes,

environments, uses, delivery platforms and designs that can be applied. With speed comes

the need for some governance and consistency, and QlikView is no exception to that.

These best practices are not fully comprehensive. A good strategy for staying current with best

practices is to augment the use of documentation such as this with other forms of input. Some

of these are:

- QlikCommunity – QlikView’s online community with 10,000’s of users

- QlikTalks – local and regional QlikView gatherings where best practices, new

features, showcase solutions and vendor experts are highlighted.

- QlikTech Expert Services – an array of services are designed to help a QlikView

team come up to speed very rapidly with best practices in development,

architecture and administration. Contact your Account Executive or Regional

Services Director for information on the services available from QlikTech and its

certified partners around the world.

- Developer groups – groups local to a client or organized by several clients are

forming in many cities. Check to see if there is a local user group in your city

through QlikCommunity.

QlikTech strongly urges clients to take time to learn best practices and techniques that optimize

deployments and speed time to delivery for QlikView. Consider the implementation of these

best practices and others into your deployment. They are a great way to accelerate the

successes of QlikView even further!

