QlikView

Hierarchies

QlikView Technical Brief

26 Nov 2013, HIC

www.qlikview.com

QlikView

Contents
(@70] 01T 01 £ TSRO PPOP PP PRR R 2
[a11foTo [UTe3 (o] o KOOSR UPPPPTPPIOt 3
=Tl o] (Y T =Y L 1) = OO 3
Different types Of NIErarChiesoooiiiiiiii e 4
Balanced or UnNbalanCed?coooiiiiieiieie ettt e e e e aeaeaaes 4
FIX-18VEI OF N-IEVEI? ... ettt e e e e e e as 5
Named levels or NON-NaMEd [EVEIS?...... .o e e e e eeeees 5
[aETolo [<To I o g g o) A =Te o [=To I PO PRPRP PP 5
How a hierarchy is stored in @ database.........cooviiiiiiiiiiiiii e 7
The Horizontal hierarchy — Each level in its own field.............oieiiiiiiiiiice e, 7
The Adjacency list MOEL..........uuuiiiiei e e e e e e e e e e e eeeaennnnan 8
Path ENUMEIAtioNccoiiiiiiic et e e e e e e e e e e e e e e e e e eas 9
The Nested SEtS MOUENccooeieiiii e e e e e e e e e e e e e e e eeeeeeennnann 9
The ANCESTON tADIE i e e e e ee e 10
TOOIS N QUIKVIBW ..t et e e e e e e e e e e e e e e e e e e eeeesre b b ns 11
THE DIl dOWN GrOUP .. ceeieiiiiie ittt ettt e et e e e e e eeas 11
The HIErarChy PrefiX ... i e e e e e et e e e e e e e e eeeeeneennen 12
The HierarchyBelongSTO PrefiX ... ettt 13
The Tree-VIEW lIST DOX ...cee e e e e e e e e e e e eeeeennen 14
B I TSI g V0] A 7= o] SN 14
D= = 2o To 1= 11T RSP 15
The Expanded Nodes table — to describe the Nodesuueiiiiiiiiiiiiiiiii, 15
B I LS aToT=T=3 (o] g =1 o = SN 16
The Expanded Nodes table — to describe the trees....... .o, 16
AUTNOTIZATION ... oot e e e e et e e e e e e e e e e e e e et e e e e aaeeeeeeeaaaaan 17
Case 1: The source is in an Adjacent NOES tADIE..........cccuveeeeuveeeciieeeiiie e e eeeae e e e saeeesianaenes 18
Case 2: The source is in @ HOrizONEAI tADIEccceveeeeieieeiiieesieeeete ettt st ste s saeeesiane e 19
D= = T 1 (=Y o |1 SRS 20

QlikView

Introduction

Hierarchies are an important part of all business intelligence solutions, used to describe dimensi-
ons that naturally contain different levels of granularity. Some are simple and intuitive whereas
others are complex and demand a lot of thinking to be modeled correctly.

From the top of a hierarchy to the bottom, the members are progressively more detailed. For ex-
ample, in a dimension that has the levels Market, Country, State and City, the member Americas
appears in the top level of the hierarchy, the member U.S.A. appears in the second level, the
member California appears in the third level and San Francisco in the bottom level. California is
more specific than U.S.A., and San Francisco is more specific than California.

This document tries to describe which types hierarchies there are, define some basic attributes and
explain how they should be modeled and loaded into QlikView.

Examples in real life

The time dimension
Year, month, day, hour, minute and second are attributes that form a hierarchy.

The product dimension

A product can often be delivered in different packages, e.g. in different sizes. At the same time
a product belongs to a product group. Hence, product group, product and package are attri-
butes that form a hierarchy. A product from the pharmaceutical industry can serve as example:

e Product group: Pain killers
e Product: Paracetamol
e Package: Paracetamol package with 20 x 500 mg.

The geography / customer dimension

A customer is usually associated with a City, a State, a Country and a Market region. These
fields form a hierarchy.

The wine districts of the world

A wine always has an origin. It could for instance come from Bordeaux, which is part of France,
which in turn is part of Europe and the World. Bordeaux also has sub-levels such as Graves,
Sauternes and Médoc, which in turn also have sub-levels such as Haut-Médoc and Barsac.
These wine-districts form a hierarchy.

QlikView

Different types of hierarchies

A hierarchy always consists of a number of members — nodes — that have one parent each. In the
general case, each node can have any number of children. This way, a hierarchy often looks like a
tree: A starting point — the root — and a structure of nodes that branches out from the root.

Sometimes you encounter “hierarchies” where some nodes have more than one parent. These are
strictly speaking really not hierarchies at all, but more general directed graphs.

Just like a real tree, a hierarchy can also have leaves. These are objects that usually are of a differ-
ent type than the nodes, but still belong to a specific node.

In a database situation, the nodes in a hierarchy typically form the dimension whereas the leaves
usually are the transactions in the fact table, associated to one specific node each.

Balanced or Unbalanced?

One property of a hierarchy is whether it is
balanced or unbalanced. “Balanced” means
that all leaves belong to nodes of the same
level.

One good example is the calendar dimension:
In the common case, all branches go down to
the bottom level, the dates, and all leaves, e.g.
orders, invoices or some other transaction
type, have dates and are linked to this level.

The opposite case is if the hierarchy is unba-
lanced. In such a case you have consistent
parent-child relationships but logically incon-
sistent levels. This means that all leaves are not connected to the same level: they can be found on
different levels.

A good example is the wine districts of the world: A bottle of wine often has its origin written on the
label — a specific wine district. But a district can belong to a bigger district, which in turn can belong
to an even bigger district. Depending on whether the wine is specified to come from one specific
vineyard or is a bulk wine from a larger area, origin can be more or less precise. So, in principle, a
wine can be labeled to belong to any of the nodes in the tree. It can for instance be an unspecified
table wine from Bordeaux or it can be a better wine that comes from one of the sub districts of
Bordeaux, e.g. Bas-Médoc.

That the levels are “logically inconsistent” means that a wine district is not necessarily organized or
named the same way as in another district. France has, for instance, a different system for denomi-
nation of wine districts than Germany.

QlikView

L
Cfor>
i e o>

Bourgogne> Graves

Bourgogne

T < T [~ e
Bas-Médoo>

g B> (SE>

q
Australia > T Barossa v,
oonawarra

Oceania

Fix-level or n-level?

Closely related to balanced/unbalanced is the question of number of levels. An unbalanced hier-
archy usually has an unknown, maybe even dynamic, number of levels, whereas a balanced
hierarchy usually has a fix number of levels, well defined when you decide your data model.

But the two concepts — fix-level vs. balanced — are still not the same thing. There are fix-level,
unbalanced hierarchies: An example is if you have a fact table with mixed granularity. Then you
have a fix-level calendar hierarchy (Year, Quarter, Month, Day) while at the same time you have
transactions that link to different levels in the hierarchy: It could be that the actual numbers are
linked to dates, but the budget numbers are linked to months. Hence — an unbalanced hierarchy.

Named levels or non-named levels?

The main question, however, when loading data into QlikView, is whether the levels have specific
names or not. If a level has a name, you most likely want to display that level in QlikView as a field
with that name. But if you instead have unnamed levels, the situation is quite different. Again, the
wine districts can serve as example: A wine district could be referred to as “District” irrespectively if
it is a district on the third level or on the fifth level of the hierarchy. In such a case, you do not want
the different levels in different list boxes.

Ragged or not ragged?

A special case of a hierarchy with named levels is the ragged hierarchy. In a normal, balanced, fix-
level hierarchy, all branches of the hierarchy descend to the same level, and each member's logical
parent is the level immediately above the member.

But in a ragged hierarchy, this need not be true. In a
ragged hierarchy, there may be levels missing in
some branches.

One good example is The U.S. states and cities:
Cities always belong to a state — except Washington
DC. This city does not belong to any state, but still
belongs to the U.S. Hence, this is a ragged hierarchy
where the state is missing for this node.

CUSA_ > New York>

QlikView

Los Angeles
ashington DC

How a hierarchy is stored in a database

QlikView

Storing hierarchies in a relational model is a common challenge, with multiple solutions. There are
several approaches:

e The Horizontal hierarchy

e The Adjacency list model (Adjacent Nodes)

e The Path enumeration method

e The Nested sets model (Tree traversal)

e The Ancestor list (Reflexive Transitive Closure)

There is no general rule for how to load a hierarchy. It all depends on what type of hierarchy you
have, and how this is stored. You will need to check your data to find out in which form the hier-

archy is stored and use the appropriate loading algorithm. Below you will find descriptions for the
most common cases.

The Horizontal hierarchy — Each level in its own field

The most common way to store a simple hierarchy is to have names on the levels and store each
level in its own field.

Customer
Eintrach GS

La Ropa Yieja
Dr Jims Trousers
Urras Shop

Man Kleider
Menage a Trois
Las Corbatas

Big Foot Shoes
Shoe Expert

gl —3ET-Ir-"RENIF- NPT NFNFRIT R =

La Tienda de la Esquina

La Legion Mercenaire

Country Region
Germany Europe
Mexico Americas
Mexico Americas
UK Europe
Sweden Europe
Germany Europe
France Europe
Spain Europe
France Europe
Canada Americas
UK Europe

The hierarchy need not be in one table only, but can be split in several tables, e.g. one table for
products and several ones for different levels of product groups.

ProductSubGroupID
=o| ProductlD
CategorylD
ProducthName
QuantityPerUnit
SupplierlD

UnitCost

ListPrice
UnitsInStock
UnitsOnOrder

L

ProductSublsronps
ProductGroupID
ProductSubGroupID
ProductSubGroupName

ProductGroups

ProductSuperGroupID
ProductGroupID
ProductGroupName

ProductSuperisronps
ProductSuperGroupID
ProductSuperGroupName

QlikView

The most common case of a horizontal hierarchy is a balanced, fix-level hierarchy with named
levels. This means that all the transactions link to the same level in the hierarchy, i.e. to one single
field. Typically this field is a date, a customer ID or a product ID. Examples of such hierarchies are:

e Year — Quarter — Month — Day
e Customer — State — Country — Market
e Product Group — Product — Package

Just load the table and create a drill-down group from the appropriate fields in the hierarchy (Docu-
ment properties — Groups). Then use the drill-down group as a field in charts, tables and list boxes.

However, sometimes you have an unbalanced, fix-level hierarchy with named levels.

You cannot see by looking at the dimensional table that you have an unbalanced, fix-level hier-
archy. Instead, you must look at the facts and see whether the transactions always link to the same
field or not.

One case where they don't, is when you have both budget and actual numbers in one single fact
table. It could be that the budget numbers are per month and country whereas the actual numbers
all have a timestamp and a customer ID.

The way you load this in QlikView is by using generic keys. See the Technical Brief “Generic Keys”
for more information.
The Adjacency list model

The adjacency list model, or Adjacent nodes table, is by far the yodeip parentip Name

most common way to store an unbalanced n-level hierarchy. 1 The World
The principle is that each node is stored in its own record, and 20 1 Americas
hat h dh f . k inti tth t 79 20 United States
that each recor a}s a foreign key pointing out the parent. In 85 79 California
other words; there is exactly one record per node. 90 85 Napa Valley
. . . . 178 1 Europe
The ID is the primary key that links the hierarchy to other data, 281 178 France
typically transactions or inventory records. 283 281 Bordeaux
288 283 Médoc
The root is defined by the record that has NULL or blank as 294 288 Haut-Médoc
parent. Several roots are possible, although it often is = (e
368 354 Rheingau

preferable to have one common root node.

The main advantage with this model is that it is extremely easy to manage and maintain. If a node
is to be added, it does not affect any other node. If an entire sub-tree needs to be moved, the
ParentID of the root of the sub-tree is changed, and that is all.

The table completely defines the hierarchy, but since it doesn’t explicitly store the information about
daughters, it needs to be transformed to be usable in QlikView. This transformation can be made

QlikView

using one of the two hierarchy-resolving load prefixes in QlikView: Hierarchy and
HierarchyBelongsTo. See more below about these.

Path Enumeration

Similar to the adjacency list, is the Path enumeration. It

) NodeID Path Name
is also a general way to store an unbalanced n-level 11 The World
hierarchy. 20 1420 Americas

79 1/20§79 United States
However, instead of storing the parent ID explicitly, a 85 1/20/79/85 California
path to the node is stored. It has the advantage that 132 iﬁg,fsn,fss,fgo gjgapzauey
some SQL queries are easier to perform. The disadvan- 281 1}178/281 France
tage is manageability. It is not as easy to change the 283 1/178/281/283 Bordeaux

288 1/178/281/283/288 Médoc

294 1/178)281/283/288... Haut-Médoc
354 1/178)354 Germany
368 1/178/354/368 Rheingau

structure or to move a tree.

Also this table completely defines the hierarchy, and
also here the table needs to be transformed to be usable
in QlikView.

The Nested sets model

The nested sets model is an additional, general way to store an [e

unbalanced n-level hierarchy. 1 1382 The World
. X i 38 313 Americas
Instead of having a key to the parent, each node is associated 155 308 United States
with a numeric range; a lower bound and an upper bound. All 166 189 California
descendants have ranges that are completely enclosed by all ;;i 1:;2 ’E"jfoi :a"e”
ancestors. So by looking at whether a number of a node is 559 702 France
enclosed by the bounds of another node, the parent-child 562 613 Bordeaux
. . . 571 588 Médoc
relationshi n rmined.
elationship can be dete ed s e
Also this table completely defines the hierarchy, and also here the 705 750|Germany
732 737 Rheingau

table needs to be transformed to be usable in QlikView.

The nested sets model is not as commonly used as the adjacency list model, since it is not as easy
to make changes. However, the nested sets model is usually faster to query on an SQL database
than the adjacency list model.

The Ancestor table

QlikView

The ancestor list, or the Reflexive Transitive Closure table, is not commonly used to store the
source data. But it is very common that a database view is defined this way, since it presents the
hierarchy in a form that is directly usable in a query.

In this table, every combination of an ancestor and a descendant is listed as a separate record.
Hence, it is very easy to find all ancestors or all descendants of a specific node.

NodeID Name
1 The World
20 Americas
20 Americas
178 Europe
178 Europe
79 United States
79 United States
79 United States
281 France
281 France
281 France
354 Germany

BelongsTolD BelongsTo

1 The World
1 The World
20 Americas
1 The World
178 Europe
1 The World
20 Americas
79 United States
1 The World
178 Europe
281 France
1 The World

Sometimes it includes records that are self-references, where a node belongs to itself, e.g. ‘France’

belongs to ‘France’, sometimes not.

In QlikView, this table can be created using the HierarchyBelongsTo prefix.

Tools in QlikView

QlikView

The Drill down group

In QlikView you can group fields together to form a drill-down group (Document Properties ->
Groups). This means that you can use the group instead of the separate fields in charts and list-
boxes. If there is only one value possible in the top field, it will automatically display the field of the

next level instead.

Group Name

Available Fields

>Geography

@ Drill-down Group
) Cyclic Group

Used Fields

Address

CategorylD
CategoryName
City
ContactName

Description
Discount
EmployeelD

Fax

Freight

ListPrice
NominalDiscount

OrdeDate
NedarN au

* CustomerlD

- Aw)

L Add All >>

< Remove

(
| Promote

\L Demote

Show Fields from Table

O All Tables

Region
& Country
Customer

[AddEwressin | |

Edit..

)

Lotel

[<use field name

[ok J[cowe ||

Help

]

General | Dimensions | Dimension Limits | Expressions | Sot | Style | Presentation | Axes | Colors | Number | Font |

Available Fields/Groups

& CategorylD
CategoryName
City
ContactName

& Country
Customer

& CustomerlD
Description

| Addess _______________Jig

Promote

Demote

Used Dimensions

=Y =Geography

| Add Calculated Dimension... | |

QlikView

The Hierarchy prefix

The hierarchy prefix is a script command that you put in front of a NodeID ParentID Name
Load or SELECT statement that loads an adjacent nodes table: 1 The World
20 1 Americas
Hierarchy (NodelD, ParentID, Name) 79 20 United States
Load NodelD, 85 79 California
a0 85 MNapa Yalley
Paren“D’ 178 1 Europe
Name 281 178 France
From Examples\Winedistricts.txt ; 283 281 Bordeaux
288 283 Médoc
294 288 Haut-Médoc
The Load statement needs to have at least three fields: An ID that — ey
368 354 Rheingau

is a unique key for the node, a reference to the parent and a
name.

The reference to the parent should have a match among the node IDs. If it doesn'’t, or if it is NULL,
the node will be considered a root node. The node name has to be there — if your source table
lacks node name, you need to create a name using “NodelD as Name”.

It is also possible to have additional fields.

The prefix will transform the loaded table into an Expanded Nodes table; a table that has a number
of additional columns; one for each level of the hierarchy:

NodeID ParentID Name Namel Name2 Name3 Name4 NameS5 Nameb

1 The World The World - - - - -
20 1 Americas The World Americas - - - -
79 20 United States The World Americas United States - - -
85 79 California The World Americas United States California - -
90 85 Napa Yalley The World Americas United States California Napa Yalley -
178 1 Europe The World Europe - - - -
281 178 France The World Europe France - - B
283 281 Bordeaux The World Europe France Bordeaux - B
288 283 Médoc The World Europe France Bordeaux Médoc -

294 288 Haut-Médoc The World Europe France Bordeaux Médoc Haut-Médoc
354 178 Germany The World Europe Germany B B B
368 354 Rheingau The World Europe Germany Rheingau - -

Note that the resulting Expanded Nodes table has exactly the same number of records as its
source table: One per node. This will be true in all well-formed hierarchies. There are however
some exceptions, see below under “Data Integrity”.

The Expanded Nodes table is very practical since it fulfills a number of requirements for analyzing
a hierarchy in a relational model:

e All the node names exist in one and the same column, so that this can be used for
searches.

QlikView

e In addition, the different node levels have been expanded into one field each; fields that
can be used in drill-down groups or as dimensions in pivot tables.

e |t can be made to contain a path unique for the node, listing all ancestors in the right order.

e |t can be made to contain the depth of the node, i.e. the distance from the root.

The HierarchyBelongsTo prefix

Just as the Hierarchy prefix, the HierarchyBelongsTo is a script command that you put in front of a
Load or SELECT statement that loads an adjacent nodes table:

HierarchyBelongsTo (NodelD, ParentIlD, Name, BelongsTolD, BelongsTo)

Load NodelD,
ParentID,
Name

From Examples\Winedistricts.ixt ;

Also here, the Load statement needs to have at least three fields: An ID that is a unique key for the

node, a reference to the parent and a name.

The prefix will transform the loaded table into an Ancestor table — a reflexive transitive closure table
— a table that has every combination of an ancestor and a descendant listed as a separate record.
Hence, it is very easy to find all ancestors or all descendants of a specific node.

NodeID Name
1 The World
20 Americas
20 Americas
178 Europe
178 Europe
79 United States
79 United States
79 United States
281 France
281 France
281 France
354 Germany

BelongsToID BelongsTo

1 The World
1 The World
20 Americas
1 The World
178 Europe
1 The World
20 Americas
79 United States
1 The World
178 Europe
281 France
1 The World

The Ancestor table is very practical since it fulfills a number of requirements for analyzing a hier-

archy in a relational model:

e If the node ID represents the single nodes, the ancestor ID represents the entire trees and

sub-trees of the hierarchy.

e All the node names exist both in the role as nodes and in the role as trees, and both can be

used for searches.

e |t can be made to contain the depth difference between the node depth, and the ancestor
depth, i.e. the distance from the root of the sub-tree.

The Tree-view list box

QlikView

If you have a path to the node, it is possible to display this as a tree by using a list box in Tree-view
mode (List box properties -> General -> Show as Tree view). This simplifies navigation and allows
you to collapse entire sub-trees.

Path

The World

The WorldfAmericas

The World/Americas/United States

The Worldjamericas/United States/California
The WorldfAmericas/United States/Californiafl
The World/Europe

The World/Europe/France

The World/Europe/France/Bordeaux

The World/EuropejFrance/Bordeaux/Médoc
The World/EuropejFrance/Bordeaux/Médoc/H
The World/Europe/Germany

The World/Europe/Germany/Rheingau

The World/africa

The World/africafAlgeria

The World/africafMorocco

The WorldjafricafMoroccofatlas Mountains
The WorldjafricafSouth Africa

Path

= The World
=) Americas
[# United States
[+ Argentina
[+ Brazil
[+ Canada
Chile
[+ Mexico
[+ Yenezuela
(= Europe
France
Germany
[+ Austria
[+ Bulgaria
[+ Croatia
i+ Cyprus
[+ Czech Republic
Georqia

0

00

In the left list box you can see what the field “Path” looks like originally, and in the right you can see
how the tree-view displays this information.

The Pivot table

The pivot table is excellent to display hierarchies, especially if you use the “Indent mode”. To do
this, you need the different levels in different fields.

Namel Name2 Name3 Name4 Sum {Amount)
= Americas ® 145
Panos = Bordeaux & 157

- # 24

m;l d Europe Germany & 173
- @ 97

Total 451

Total 596

District Sum {Amount)
= The World 596
[Americas 145

(= Europe 451

- 97

= France 181

& - 24

(# Bordeaux 157

Germany 173

QlikView

Data modeling

So, what do you need to do to create a hierarchical data model that supports your analysis? If you
have a fix-level hierarchy with named levels, it is straightforward. Just load the data and use drill-
down groups, and you are pretty much set.

But what if you have an unbalanced, n-level hierarchy stored in an adjacent nodes table? There is
not just one answer to that question. As usual, there is more than one way to solve a problem with
QlikView. Below you will find my suggestions for this case.

The Expanded Nodes table — to describe the nodes
First, you should create an Expanded nodes table using the Hierarchy prefix.

[Nodes]:
Hierarchy (NodelD, ParentID, Node, NodeParent, Node, NodePath, '/', NodeDepth)
Load NodelD,

ParentID,

NodeName as Node

From Winedistricts.txt;

With the columns listing the different node levels (Node1...Node7), you will be able to create a pivot
table showing the proper aggregations from the fact table. Further, the NodePath field can be used
in a tree-view list box.

Factilable
NodelD NodelD
Fleld fOI' ParentlD TransactionID
: A t
node selection —
Fields for
Pivot table
Field .fOf' NodeParent
tree-view < NodePa
List box 22D

QlikView

The Ancestor table

The Expanded Nodes table above, however, fails in one aspect: Selections. Yes, you can select
nodes, but the most common selection a user wants to make, is an entire sub-tree. l.e. by pointing
at a node and clicking it, the user wants a result where all sub-nodes are possible.

To create a field where you can do this, you need to create an Ancestor table. Hence, the second
step in creating the data model is to create an ancestor table listing the trees:

[TreeBridgel]:
HierarchyBelongsTo (NodelD, ParentlD, NodeName, TreelD, TreeName)
Load NodelD,

ParentID,

NodeName

From Winedistricts.txt;

The TreeName field is perfect for making searches and selections of entire sub-trees. Further, it is
also perfect for authorization purposes, e.g. as reducing field in Section Access.

Note that you need to name the node name differently here from in the Expanded Nodes table, to
avoid synthetic keys.

The Expanded Nodes table — to describe the trees
Finally, it is also possible to create a second Expanded Nodes table, but this time for the TreelDs.

[Trees]:
Hierarchy (TreelD, TreeParentID, Tree)
Load NodelD as TreelD,
ParentID as TreeParentID,
NodeName as Tree
From Winedistricts.txt;

The advantage with a second Expanded Nodes table is that the fields describing the levels
(Treel...Tree7) are perfect for creating a drill-down group that can be used in different charts.

Note that you need to name the tree name differently here from in the Ancestor table, to avoid
synthetic keys.

The final data model may look like the following: You may not need all three tables, so use the
ones you need.

Field for
node selection

Fields for
Pivot table

Field for
tree-view
List box

Authorization

NodelD
ParentlD

NodeParent

< NodePa

ooeDepth

Factilable
NodelD
TransactionID
Amount

IreeBridge
TreelD
NodelD
NodeName

"] TreeName

Field for
tree selection

QlikView

drees

TreelD
TreeParentlD
Tree

Fields for
tree drill-down

It is not uncommon that a hierarchy is used for authorization. One example is an organizational
hierarchy. Each manager should obviously have the right to see everything pertaining to their own
department, including all its sub-departments. But they should not necessarily have the right to see

other departments.

Audit
department

Finance

Product

l CEO
|
1
el Sales &
ervice Marketing

HR

——

Engineering

Quality

Y

Global Sales
Department A

Marketing

QlikView

This means that different people will be allowed to see different sub-trees of the organization. The
authorization table may look like the following:

ACCESS NTNAME Person Position Permissions
USER ACME\BKO Bill CPO HR

USER ACME\DKM Diane CEO CEO

USER ACME\DPT Debbie Director Engineering Engineering
USER ACME\JOO John CFO Finance

USER ACMEILBY Les COO Sales & Marketing
USER ACME\SDN Steve CTO Product

In this case, Diane is allowed to see everything pertaining to the CEO and below; Steve is allowed
to see the Product organization; and Debbie is allowed to see the Engineering organization only.
Hence, this table needs to be matched against sub-trees in the above hierarchy.

Case 1: The source is in an Adjacent Nodes table

It the hierarchy is stored in an Adjacent Nodes table, the above problem is easy to solve: Just load
the Adjacent nodes table as an Ancestor table (see above) using a HierarchyBelongsTo and name
the ancestor field “Tree”.

Then you need to load an upper case copy of Tree and call this new field PERMISSIONS. Finally,
you need to load the authorization table. These two last steps can be done using the following
script lines: (The TempTrees table is the table created by the HierarchyBelongsTo.)

Trees:

Load *,
Upper(Tree) as PERMISSIONS
Resident TempTrees;

Drop Table TempTrees;

Section Access;
Authorization:
Load ACCESS,
NTNAME,
UPPER(Permissions) as PERMISSIONS
From Organization;
Section Application;

When you have done this, you should have a data model that looks like the following:

QlikView

Factiiable
DepartmentlD
TransactionID
Amount

Aoy Zatioy)

PERMISSIONS PERMISSIONS
ACCESS DepartmentID
NTNAME DepartmentName DepartmentlD
TreelD Department [|
Tree ParentlD =
Departmentl —
Department2

Department3 «

The red table is in Section Access and is invisible in a real application. Should you want to use the
publisher for the reduction, you can reduce right away on the Tree field, without loading the Section
Access.

This solution will effectively limit the permissions to only the sub-tree as defined in the authorization
table.
Case 2: The source is in a Horizontal table

But what if you have the hierarchy in a horizontal hierarchy? Then you cannot use the
HierarchyBelongsTo.

DepartmentID Name Board level Top level Department Unit

1 Board Board - - -

2 Audit department Board Audit department - -

4 CEO Board CEO - -

S Finance Board CEO Finance -

13 Engineering Board CEO Product Engineering

14 Quality Board CEO Product Quality

16 Global Marketing Board CEO Sales & Marketing Global Marketing

17 Sales Department & Board CEO Sales & Marketing Sales Department A
18 Sales Department B Board CEO Sales & Marketing Sales Department B
23 Logistics Group Board CEO Service Logistics Group
26 Salary Group Board CEO HR Salary Group

A horizontal hierarchy

The solution is not very different from the above one. The only difference is that you need to create
the bridging Trees table manually, e.g. by using a loop:

QlikView

Let vHierarchyDefinition = 'Board level, Top level,Department,Unit’;
Let viNumberOfLevels = Len(KeepChar(vHierarchyDefinition,",")) + 1 ;

For vAncestorLevel = 1 to vNumberOfLevels
Let vAncestor = Subfield(vHierarchyDefinition,',',vAncestorLevel);
Trees:
Load distinct
Upper([$(vAncestor)]) as PERMISSIONS,
DepartmentID
Resident [Horizontal Hierarchy];
Next vAncestorLevel

Having done this, you will have the following data model:

Factiiable
DepartmentlD
TransactionID
Amount

AUTHoTyZation
PERMISSIONS
ACCESS
NTNAME

DepartmentID
PERMISSIONS

HorizontalHierarchy,
DepartmentID

Board level

Top level

Department

Unit

Data integrity

A common problem with unbalanced n-level hierarchies is data integrity. The data may be incon-
sistent and it could be a good idea to check that the source table contains what you expect it to
contain. And maybe correct the source...

1) Duplicates or Multiple parents
Source data may contain duplicate records for single nodes, e.g. that a node is described
in two records with different names or that a node has multiple parents.

You need to determine whether you think this is OK. QlikView can load this type of data,
but it often looks inconsistent in the eyes of the user. | would recommend not having
duplicates.

20

QlikView

Also, it could imply performance problems. Loading such a table will mean duplicate rows
in the resulting Expanded Nodes table, so that a daughter node gets not only two records,
but four or eight or more, depending on how many of its ancestors have multiple parents.

The following script may help you find the duplicates:

Load NodelD,
Count(NodelD) as NoOflnstances,
Count(distinct ParentID) as NoOfParents
From Source
Group By NodelD;

Unlisted parent nodes
Each node need a record of its own in the Adjacent Nodes table, but it is not uncommon
that some parent nodes, especially the root node, are missing from this list.

You need to determine whether you think this is OK. QlikView can load this type of data,
but this may lead to the hierarchy having several root nodes and that root nodes aren’t
selectable.

The following script may help you find the unlisted nodes:

Load NodelD
From Source ;

Load *,
If(Exists(NodelD,ParentID), 'Existing’,'Non-existent') as ParentExistence
From Source ;

Circular references

If the source table contains a circular reference, e.g. node A has node B as parent, node B
has node C as parent, and node C has node A as parent, the hierarchy resolution will
break up the circle and remove one of the parent IDs. In more complex situations it may
result in that some nodes are excluded.

My recommendation is to always avoid such structures.
The following script may help you find the circular references:

Tree:
Load NodelD as Level 1
From Source ;

For nLevel =0 to 20

Let nLevelBelow = nlLevel + 1 ;
Left Join (Tree)

21

HIC

QlikView

Load ParentID as Level $(nLevel),
NodelD as Level_$(nLevelBelow)
From Source.qvd ;

CountAddedNodes:
Load Count(Level_$(nLevelBelow)) as NoOfAddedNodes Resident Tree;

For nAncestorLevel = 0 to nLevel
AncestorScan:
Load Level_$(nLevelBelow) as NodelDThatAlreadyExists
Resident Tree
Where Level $(nAncestorLevel) = Level_$(nLevelBelow);
Next nAncestorLevel

Let vExitCriterion1 =
Peek('NoOfAddedNodes',-1,'CountAddedNodes') = 0 ;

Let vExitCriterion2 =
not IsNull(Peek('NodelDThatAlreadyExists',-1,'AncestorScan’));

exit for when vExitCriterion1 or vExitCriterion2

Next nLevel

22

