

Best Practices

QlikView Optimisation

Version: 1
Date: 20/03/2007
Author(s): STB/ABY

"A best practice is a technique or methodology that, through experience and research,
has proven to reliably lead to a desired result."

Contents

CONTENTS .. 2

MANAGING YOUR DATA SOURCES ... 3

Performance and Efficiency .. 3

Data Model Scenarios and Solutions ... 3

Script Example: .. 5

Complex Dimensions and Expressions ... 6

Adding Aggregatable Columns in to Your Script ... 9

Hands On .. 10

Managing Your Data Sources
QlikView’s ability to sit on top of multiple data sources give developers the challenge of
ensuring that the data model and data that QlikView builds is done so in an efficient
manner that generates the highest possible performance legel wihtin the analysis of the
data.

Performance and Efficiency

Although QlikView can analyse millions of rows of data (your hardware permitting) we
have to ensure that we have developed the script in such a way that QlikView can
perform as you would expect it to.

Data Model Scenarios and Solutions

QlikView can and will analyse multiple data sources and models but works most
efficiently with a Star Schema or Snowflake data model. Some example are below to
help you understand how to handle various data scenarios and how best to implement
them within QlikView Script.

Multiple Star Schemas

Many organisations have various disparate data models that have ‘loose’ links between
them but will want to analyse these sources all together. The data model would look
something like the example below:

This example would work best within QlikView if we look to create one single fact table
that spans your schemas and then has multiple dimension tables hanging off of it. The
example below shows (by using the CONCATENATE function) how QlikView would
work best with the data:

Dimension Dimension

Dimension Dimension

Fact Table1

Dimension Dimension

Dimension Dimension

Fact Table2

Link Table

load * from file1.csv;
CONCATENATE
load * from file2.csv;

If two tables that are to be concatenated have different sets of fields, concatenation of
two tables can still be forced with the concatenate prefix. This statement forces
concatenation with an existing named table or the latest previously created logical table.

Fact Table1 Fact Table2

Dimension Dimension

Dimension Dimension

Functional example of Concatenate:

Script Example:

Load OrdersFact
 Order_Date as Date
 Order_ID
 Order_Amount as Amount

Country_ID
Product_ID
‘Order’ as TransactionType

CONCATENATE
Load SalesFact
 Sales_Date as Date
 Sales_ID
 Sales_Amount as Amount

Country_ID
Product_ID

 ‘Sale’ as TransactionType

Sales Fact
Sales_Date

Sales_ID
Sales_Amnt

Product
Dimension

Country
Dimension

Orders Fact
Order_Date

Order_ID
Order_Amnt

Product
Dimension

Country
Dimension

Before

Concatenated Fact
Date

Order_ID
Sales_ID
Amount

Country_ID
Product_ID

Product
Dimension

Country
Dimension

After

Placing the ‘Sale’ and ‘Order’ text types in
the script will provide you with a column to
determine the transaction type.

Complex Dimensions and Expressions

Many dimensions and expression that are to be placed in charts or tables require some
degree of complex scripting such as IF THEN ELSE statements or WHERE [FIELD1] IS
NULL.

Many developers build there initial data model using the processes above but then stop
amending the script and work solely within the dashboard/GUI. When designing/writing
your script you should already be aware of some of the measures that you are looking
to create in the end.

Where ever possible you should look to place all complex formulas and statements
within the script of the application and not in the actual dashboard/application objects.

Example…..
If you are to use complex expressions within a dimension or calculation then you should
move as much of this as possible in to the scripting of the QVW. In the example below
you can see that the developer has added an IF statement to the Definition of an
expression.

Where ever possible you should keep the expressions and dimensions as simple as you
can and move the complex expression in to the script.

Resource intensive Expressions

The recommendations below should not be seen as universally beneficial. Use them
when they improve the general state of the application or when they make that little bit
of difference that makes or breaks.

Cases:
1. Count (Distinct ‘FieldName’)
2. If (Condition(Text),…..)
3. Sum (If (Condition, ‘FieldName’…))
4. If (Condition, Sum(‘FieldName’)..)
5. If (Condition1, Sum(‘FieldName’),

If (Condition2, Sum(‘FieldName’)……..
6. Sort text
7. Dynamic captions and text objects
8. Macro triggers (“on change”)

Case1. Replace the count() with sum() and the distinct qualifier by assigning the value
‘1’ to each distinct occurrence as it is read in the script.

Case2. Map Text to numeric e.g. by using autonumber and/or do the test in the script.

Case3. Here the aggregation is independent of the table dimensions and the result is
distributed over the dimensions of the table. The problem can be treated either by doing
the test in the script and aggregating in the table or by doing the whole operation in the
script. There are numerous techniques for this e.g. interval match, group by, peek,
if….then…else.

Case4. Included here to emphasize the difference to Case3. This aggregation is
completely contextual.

Case5. The logic of nested If..then else.. is conceptually easy but can often become
troublesome to administer. We have seen cases with hundreds of nesting levels. This
will be memory and CPU intensive. Often the “Conditions” can be replaced by
transforming them. A typical example is aggregating quantity*price where price is
variable. This can be handled by “extended interval match”. If two conditions, e.g. “ A
AND B “ are to be satisfied the test might be replaced by a condition “C” .

Case6. QlikView automatically evaluates if a Field is to be treated as numeric, text or
general. Fields evaluated as text will be sorted as text which is the slowest sort
operation. This can be replaced manually to sort by load order.

Case7. Expressions can be entered almost anywhere that you can enter text. The
evaluation of an expression is however dependent on its environment. Expressions in
charts and straight- and pivot- tables that are defined in the expressions dialog are
embedded and only calculated when the object is active. For instance they are not

calculated when the object is minimized. On the other hand if the object title is
calculated this calculation is performed every time any change occurs. We also have
numerous ways of defining show conditions, calculation conditions etc. These tests
will also be performed at all times. Some expressions are more expensive than others
and of course become more expensive the more frequently they have to be evaluated.
The introduction of asynchronous calculation has shifted the behaviour and these
effects may have become more noticeable in your applications. The time functions e.g.
Now(), Today() will be evaluated whenever a recalculation has to be done. Especially
the Now() function can become quite costly since it causes a recalculation of the
application every second. For example

If (ReloadTime()+3>Now(), 'Old Data', 'New Data')

Here one might consider…
If (ReloadTime()+3>Today(), 'Old Data', 'New Data')
As a simple test, put the expressions into textboxes. Then try sizing the textbox with
Now() in it.

Case8. Macros can be set to be triggered by almost any event taking place in the
application. Beware of cascading or recursive events, where one event triggers the
next, which in turn …..

Adding Aggregatable Columns in to Your Script

It is sometime good to add manual columns in to your script to give you application the
ability to sum up over these values. This will mean you can then place the complex
statement (IF) in to your script and have a simple sum in your dashboard object.

To do this you should simply place an IF THEN ELSE statement in to your script that
substitutes a database column or a 1 or 0 as a value to enable a summing/count to take
place.

Examples:
IF(ACTIVE='Y',1,0)
IF(ACTIVE='Y',sales_amount,0)

Forcing through a 0 then takes our all of the unnecessary / unwanted values when you
apply your SUM.

Hands On

The following is a list of examples of applied methods for the handling of the problems
above. They are meant to illustrate the problem and to point at useful QlikView
functionality. It is not possible to give a general recommendation as to which method is
best, but the order of the examples is an indication.

Case1. Count(Distinct ‘FieldName’).

The distinct qualification, especially if text strings are read, is costly. A useful technique
is to assign the value ‘1’ to each new value as the field is read:

Load

Alfa,
if (peek('Alfa')=Alfa,0,1) as Flag1,
Num

 resident table_1
 order by Alfa Asc;

Here the “peek” compares the value of Alfa being read with that previously read. If the
values are the same “Flag” is set to 0, if they are different “Flag” is set to 1. The number
of distinct values will then be = sum(Flag). Please note that the list has to be ordered
and that when using “order by” in a load resident QlikView orders the list before starting
to read.

Another method:

Load distinct

Alfa,
Alfa as AlfaDist

resident table_1;

Now Count(Distinct Alfa) can be replaced by a simple count: Count(AlfaDist).
Notice that Alfa is read twice, once with the original name to link to the original table,
once with a new name to allow Count(). (Linking fields not allowed in Count()). All other
fields must also be left out as they would degrade the distinct clause.

A third method is to give each distinct value of “Alfa” a numeric value:

table_2:
Load

Alfa,
Autonumber(Alfa) as AlfaNum,

Num
 resident table_1;

Count(Distinct AlfaNum) is a cheaper operation than Count(Distinct Alfa) since the
comparison is of numeric values. An even cheaper method is to find the last (or largest)
result of the autonumber function.

 set AlfaDistinctCount = peek(‘AlfaNum’, -1, ‘table_2’);

in the script or as expression:

max(AlfaNum)

in a layout object.

Case2. If (Condition(Text),…..)

The testing of text strings is slower than numeric testing. Consider the expression

If (Alfa= ‘ABC’, ‘ABC’, left (Alfa, 2))

The test could be done directly in the script without loosing any flexibility

Load

*,
 If (Alfa = ‘ABC’, 1, 0) as Flag
resident table_1 ;

The expression becomes

 If (Flag = 1,’ABC’, left (Alfa, 2))

and the test is much simpler.

Case3. Sum(If (Condition, ‘FieldName’…))

This case involves two steps. The testing of “Condition” and the aggregation of the
result. Taking the previous example and adding the aggregation

 Sum (If (Alfa= ‘ABC’, Num*1.25 , Num))
Load

*,
 If (Alfa = ‘ABC’, 1, 0) as Flag
resident table_1 ;

The expression becomes

 Sum (If (Flag = 1, Num* 1.25 , Num))

The aggregation can also be done directly in the script as follows:

table_2:
Load

*,
 If (Alfa = ‘ABC’, 1, 0) as Flag
resident table_1 ;

table_3:
Load
 Alfa,

If (Flag = 1, Num* 1.25 , Num) as NewNum
resident table_2 ;

table_4:
Load
 Alfa,

Sum(NewNum) as SumNum
resident table_3
 group by Alfa ;

Note that the aggregation is done over Alfa as this is the dimension in the test.

Case5 Nested If..then else..

Often the “Conditions” can be replaced by transforming them. A typical example is
aggregating quantity*price where price is variable. This can be handled by “extended
interval match”.
Example:

sum((GAC12_STD_COST * GAC15_EXCHANGE_RATE) * GIV24_DISP_QTY)

Replaces

Sum(

If((GAC12_EFCT_DT<= GIV23_REJ_DT and
GAC12_EXPIRE_DT>GIV23_REJ_DT) and
(GAC15_EFCT_DT<= GIV23_REJ_DT and GAC15_EXPIRE_DT>GIV23_REJ_DT),
GAC12_STD_COST * GAC15_EXCHANGE_RATE) * GIV24_DISP_QTY,
Null()))

and

 Sum(

If(GAC12_EFCT_DT<= GIV23_REJ_DT,
If(GAC12_EXPIRE_DT>GIV23_REJ_DT,

If(GAC15_EFCT_DT<= GIV23_REJ_DT,
If(GAC15_EXPIRE_DT>GIV23_REJ_DT,

(GAC12_STD_COST * GAC15_EXCHANGE_RATE) * GIV24_DISP_QTY,
Null())))))

by reading the fields GAC12_STD_COST and GAC15_EXCHANGE_RATE as slowly changing
dimensions. (Please refer to Reference Manual).

