
PreSales Academy

Data Modelling

Objectives

• Defining Data Models

• Understand how QlikView is Different from SQL

• Understand Data Warehousing Theory

• Adopt Applicable QlikView Data Modeling Best Practices

What do we mean by Data Model?

Traditional definition:

• A traditional data model is a visual
representation of the people, places and
things of interest to a business and is
composed of symbols that represent the
concepts and their business rules.

• Like a building architect, who creates a series
of diagrams or blueprints from which a house
can be constructed, a data modeler/architect
creates diagrams from which a database
may be built.

• This will NOT be the topic of our discussion
today.

What do we mean by Data Model?

QlikView definition:

• A QlikView data model is the representation of data
you have loaded.

• When you load your data in to the QlikView application,
a data model will be created based on the tables and
columns you have in your script and also the names of
the columns and any resident loads and joins you have
previously defined.

• You will of course be driven by the type and structure of
your data sources.

• These sources and the underling data will have to be
manipulated within the script to deliver the Data
Model that best suits your data for both
performance and usability.

• This will be our topic today.

QlikView data models

QlikView is not SQL (SQL Schemas)

• SQL take a large schema and

queries a subset of tables.

• Each query creates a temporary

“Schema” of only a few tables.

• Query result sets are

independent of each other.

Query 1

Query 3

Query 2

QlikView is not SQL (QV Schemas)

• QlikView builds a smaller and

more reporting friendly schema

from the transactional database.

• This schema is persistent and

reacts as a whole to user

“queries”.

• A selection affects the entire

schema.

QlikView is not SQL (Aggregation and Granularity)

Store

Table
Sales

Table

Select * From Store, Sales Where Store.Store = Sales.Store will return:

Sum(FloorArea) will return: 4600

If you want the accurate Sum of FloorArea in SQL you

cannot join on the Sales table in the same Query!

Store FloorArea

A 1000

B 800

Store Product Price Date

A 1 $1.25 1/1/2010

A 2 $0.75 1/2/2010

A 3 $2.50 1/3/2010

B 1 $1.25 1/4/2010

B 2 $0.75 1/5/2010

Floor

Area

Store Product Price Date

1000 A 1 $1.25 1/1/2010

1000 A 2 $0.75 1/2/2010

1000 A 3 $2.50 1/3/2010

800 B 1 $1.25 1/4/2010

800 B 2 $0.75 1/5/2010

QlikView is not SQL (Benefits)

• QlikView allows you to see the results of a selection across the

entire schema not just a limited subset of tables.

• QlikView will aggregate at the lowest level of granularity in the

expression not the lowest level of granularity in the schema (query)

like SQL.

• This means that QlikView will allow a user to interact with a

broader range of data than will ever be possible in SQL!

QlikView is not SQL (Challenges)

• Several SQL queries can join different tables together in completely

different manners.

• In QlikView there is only ever One way tables join in any one

QlikView file.

• This means that Schema design is much more important in

QlikView!

Audience participation!

• What challenges have you encountered with basic data modeling in

QlikView?

• Most common initial challenges :

– Synthetic keys

– Circular references

Synthetic Keys

Synthetic Keys

• When there is more than one field in common between tables

 If you load as is, then…















Synthetic Keys

 QlikView creates synthetic keys

Synthetic Keys: Challenge

Q: What is a synthetic key?

A: It is a field that contains all possible combinations of common fields

among tables

Q: Is a synthetic key bad?

A: No, but try to avoid it. It is generated by QlikView. That means you

could lose the control over it when you have many of them.

Challenge

• How many ways are there to resolve a synthetic key?

1. An ANSI JOIN

2. A Concatenated Key

3. Concatenated Tables

4. A Link table

4

Synthetic Keys Solutions - Join

Q: How do I avoid a synthetic key? - #1

A: Join tables by common fields

Customer:

Load

[Customer Number],

[Customer Name]

FROM Customer;

Sales:

Load

Year,

Month,

[Customer Number],

[Sales Amount]

FROM Sales;

LEFT JOIN Load 

Year,

Month,

[Customer Number],

[Budget Amount]

FROM Budget;

Problem!
• Not getting all the data from Budget table

results in missing months for the rest of the year

• Even if joining the sales table to budget table, still

missing customers’ activities who are not budgeted

• May become a problem if tables don’t have a one-to-one

relationship

Q: How do I avoid a synthetic key? - #2

A: Create a key on your own by concatenating the common fields

Year & '_' & Month & '_' & [Customer Number] as Key

Synthetic Keys Solutions – Create key

The same problem as before!

Q: How do I avoid a synthetic key? - #3

A: Combine (concatenate) the tables so you have all the possible

values
Sales:

Load

Year,

Month,

[Customer Number],

[Sales Amount],

 Null() as [Budget Amount]

FROM Sales;

Budget:

Load

Year,

Month,

[Customer Number],

 Null() as [Sales Amount],

[Budget Amount]

FROM Budget;

Note:
• When QlikView finds multiple tables with the

exact same fields, it combines them into one

table automatically

• Create empty fields (dummy fields) using null()

function for missing ones in each table

Synthetic Keys Solutions – Auto concatenate

Q: What is the benefit of combining tables into one?

A: Guaranteed to keep all the data in a table.

Q: What is the benefit of using Auto-Concatenate?

A: When some fields are misspelled, or when some fields are left out by mistake,
then they could be easily identified (synthetic keys will appear).

Q: Do we use the concatenation method often?

A: Yes. Its the single most widely utilised QlikView method for resolving synthetic
keys.

Q: Is there a way to avoid automatic concatenation?

A: Yes. Use the syntax “Noconcatenate Load” instead of “Load”. Gives you more
control.

Synthetic Keys

Q: What is Forced Concatenate?

A: QlikView creates empty fields automatically so there is no need to
create dummy fields manually

Sales:

Load

Year,

Month,

[Customer Number],

[Sales Amount]

FROM Sales;

Budget:

CONCATENATE Load 

Year,

Month,

[Customer Number],

[Budget Amount]

FROM Budget;

Note:

• This script will end up with two tables. It is the

same structure as Auto-Concatenate method

Synthetic Keys Solutions – Forced concatenate

Circular references

Circular References

• Anytime an area is enclosed in the table viewer you will encounter a

circular reference, for example if you have two fact tables which

share a common dimension table.

Circular References

• Circular References are common in QlikView because you get
only one set of join relationships per QlikView file.

• When you get a circular reference ask yourself if you could live
without one instance of the field that is causing the extra association
(such as a duplicated field). If you can, rename it or remove it.

• Otherwise you may have to resort to concatenation or a link
table to remove the circular reference.

• Don’t kill yourself with technical link tables if you don’t have to!

Circular Reference Solutions – Challenge

• How would you resolve this circular reference?

Circular Reference Solutions - Answer

• It depends on the business logic in most cases

• In our example the question to ask is even more basic:

– Is the Shipper Company Name the same as the customer company name as this
look the most likely candidate to modify in order to remove the circular reference

• The example below is equally common, and revolves around the business
logic and reporting requirements, in this case relating to analysis fields.

Alias or

remove?

Star schema

The Star Schema Approach

The star schema (sometimes referenced as star join schema) is the

simplest style of data warehouse schema. The star schema

consists of a few fact tables (possibly only one, justifying the name)

referencing any number of dimension tables. The star schema is

considered an important special case of the snowflake schema.

(Source, Wikipedia - http://en.wikipedia.org/wiki/Star_schema)

• The standard layout and structure of data presentation is the Star

Schema. QlikView is generally most efficient when working in this

space.

• Within a Star schema model, the event data (transactions) reside in

a central “Fact Table” and the attributes of the event reside in

separate “dimension tables”. The following diagram shows the

basic layout…

The Star Schema Approach

• This model works well in a

simplistic, single event scenario.

But as QlikView can handle multiple

data sources from many different

source systems and files, we have

to work with multiple event

scenarios, or many fact tables.

Central Link Table (Event Space)

• In the event of multiple fact
tables QlikView allows us to
create a central link table
that only contains the
existing data combinations.

• Instead of Joining the tables,
the event dimensions can
be CONCATENATED in to
one central Link table.

• This link table can then be
linked back to the event
measures one side and the
dimension tables on the
other.

Focus for Walkthrough

When do I use a link table?

Q: When do I use a link table?

A: When there are common fields in multiple tables (a synthetic
key exists) but most of the fields from each table are not
shared

Customer:

Load

[Customer Number],

[Customer Name]

FROM Customer;

Sales:

Load

Year,

Month,

[Customer Number],

[Sales Amount]

FROM Sales;

Budget:

Load

Year,

Month,

[Customer Number],

[Budget Amount]

FROM Budget;

Example 1:

• In this example, a concatenation of FACT

tables would be the preferable solution,

although a basic link table solution is also

valid.

When do I use a link table?

Example 2:

Sales:

Load

Year,

Month,

Branch,

[Item Number],

[Customer Number],

[Invoice Number],

[Order Number],

[Salesman Number],

[Invoice Date],

[Sales Amount],

[Sales Qty],

[Cost Amount],

[Margin Amount],

[Unit of Measure]

FROM Sales;

Inventory:

Load

Branch,

[Item Number],

[On Hand Qty]

FROM Inventory;

Purchasing:

Load

Year,

Month,

Branch,

[Item Number],

[PO Number],

[Req Delv Date],

[PO Amount],

[Ordered Qty]

FROM Purchasing;

Most of the fields from each FACT table are not shared

How do I create a link table?

1. Create a key field with the common fields

2. Load all other fields with the key field from #1

3. Create a new table with the same key (link key) and the common
fields separately  Use DISTINCT

4. Repeat above for other tables

5. If all the tables do not share the exact same fields, create separate
keys for each table in the link table

Link Table !!

How do I create a link table?

1. Create a key field with the common fields

2. Load all other fields

Sales:

Load

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as Key,

Year,

Month,

[Branch],

[Item Number],

[Customer Number],

[Invoice Number],

[Order Number],

[Salesman Number],

[Invoice Date],

[Sales Amount],

[Sales Qty],

[Cost Amount],

[Margin Amount],

[Unit of Measure]

FROM Sales;

How do I create a link table?

3. Create a new table with the same key and the

common fields separately

LinkTable:

Load DISTINCT

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as Key,

Year,

Month,

[Branch],

[Item Number]

FROM Sales;

How do I create a link table?

• If all the tables do not share the exact same fields,

LinkTable:

Load DISTINCT

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as

Year,

Month,

[Branch],

[Item Number]

FROM Sales;

Key,SalesKey,

Sales:

Load

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as

[Customer Number],

[Invoice Number],

…

[Margin Amount],

[Unit of Measure]

FROM Sales;

Key,SalesKey,

create separate keys for each table in the link tablecreate separate keys for each table in the link table

How do I create a link table?

LinkTable:

Load DISTINCT

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as SalesKey,

Year,

Month,

[Branch],

[Item Number]

FROM Sales;

Sales:

Load

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as SalesKey,

[Customer Number],

[Invoice Number],

…

[Margin Amount],

[Unit of Measure]

FROM Sales;

LinkTable:

Load DISTINCT

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as SalesKey,

Branch & ‘_’ & [Item Number] as InvKey,

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as POKey,

Year,

Month,

[Branch],

[Item Number]

FROM Sales;

How do I create a link table? - Final Scripts

Sales:

Load

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as SalesKey,

[Customer Number],

[Invoice Number],

[Order Number],

[Salesman Number],

[Invoice Date],

[Sales Amount],

[Sales Qty],

[Cost Amount],

[Margin Amount],

[Unit of Measure]

FROM Sales;

Inventory:

Load

Branch & ‘_’ & [Item Number] as InvKey,

[On Hand Qty]

FROM Inventory;

Purchasing:

Load

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as POKey,

[PO Number],

[Req Delv Date],

[PO Amount],

[Ordered Qty]

FROM Sales;

How do I create a link table? - Final Scripts

LinkTable:

Load DISTINCT

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as SalesKey,

Branch & ‘_’ & [Item Number] as InvKey,

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as POKey,

Year,

Month,

[Branch],

[Item Number]

FROM Sales;

LinkTable:

Load DISTINCT

Null() & ‘_’ & Null() & Branch & ‘_’ & [Item Number] as SalesKey,

Branch & ‘_’ & [Item Number] as InvKey,

Null() & ‘_’ & Null() & Branch & ‘_’ & [Item Number] as POKey,

Null() as Year,

Null() as Month,

[Branch],

[Item Number]

FROM Inventory;

LinkTable:

Load DISTINCT

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as SalesKey,

Branch & ‘_’ & [Item Number] as InvKey,

Year & ‘_’ & Month & ‘_’ & Branch & ‘_’ & [Item Number] as POKey,

Year,

Month,

[Branch],

[Item Number]

FROM Purchasing;

How do I create a link table? – Finished Result

Summary

Q: What is a link table?
A: It is a table that stores all possible combinations of values

Q: When do I use a link table?
A: When there is more than one field in common between tables

Q: What is the benefit?
A: To maintain integrity of your application

QlikView Challenge
synthetic key / join / link Table / concatenate

Performance / Usability

What do we mean by Data Model? - REVIEW

Concatenate or Link Table?

• “These sources and the underlying data will have to be manipulated

within the script to deliver the Data Model that best suits your data

for both performance and usability.”

Concatenated Models

1. It does not cater for full transaction to transaction traceability.

• i.e. I select SalesID, I won’t see correlating Budget records. This is
not strictly true, but it can be true in many scenarios and thus could
be highlighted as a restriction.

2. It does not cater for implicit association between fact 1’s unique
dimensions and fact 2’s transaction records.

• i.e. If I select SalesCustomer, I won’t see the Budget information
that might be associated with the same year, month and product as
the sales records filtered out.

• For most scenarios Concatenation is the better solution. It is easy to

manage, easy to extend and takes little development effort to put in

place.

• Concatenation comes with two restrictions to vet requirements against:

Link Table Models

• Link tables replicate more traditional modelling, where a surrogate

fact table (link) is put in place to resolve all associations between

fact tables and common dimension tables.

• This might at first seem like a bullet proof solution to put in place

every time – not true.

• The positive of link tables is that they resolve the relationships like

any other table would. This gives full transaction traceability, even

data implicitly associated via the other fact table is now traceable

(select SalesCustomer – you will see the associated Budget

records).

Link Table Models - Downsides

1. Inherently complex to build. Generating the link table yourself is no
easy feat. There is considerably more sanity checking to be made to
trust the code to produce the model.

2.The link table acts as a de-normalised table, meaning that representing
high level associations like Budget at Month and Group level would
require de-normalisation to the lowest common denominator with other
facts, say Sales at Product and Date. This gives rise to a potentially
large volume of links in the link table required to resolve Month and
Group into correlating Dates and Products.

• The second downside is not exclusive to LinkTables – it is equally a
challenge when concatenating fact tables together.

General Guidelines

• Star & Snow Flake schemas work best in QlikView. Relational tables

tend to have loops (circular references) and therefore do not work

correctly when brought into QlikView.

• The 4 main guidelines for modelling can be distilled as:

General Guidelines

• Aim for a star schema. Flaking is ok, but try to keep

it to a minimum as it may impact performance

adversely to have too many tables hanging off

tables.1.

General Guidelines

• When de-normalising data (rolling up) in order to

reduce flaking, stop if de-normalising means

replicating records millions of times – the memory

pointers required to store the same value enormous

amounts of time now becomes significant.
2.

General Guidelines

• For multi-fact solutions, analyse requirements to see

if a concatenated solution meets the needs. If

transaction record traceability is crucial, rather than

analysis through association of common

dimensions, then look at whether a link table would

suit. If neither model is a good fit, a custom data

model must be delivered through careful

consideration of requirements and iterative delivery.

It may incorporate elements of both link and

concatenated tables.

3.

General Guidelines

• In larger environments whether from a data volume,

complexity or concurrency of user perspective,

efficient QlikView document design become

increasingly important. To this aim, please utilise the

tools at your disposal regarding performance

testing.

4.

Conclusions…

A Word about Requirements

• Requirements will always inform your schema design.

• If you do not fully understand your requirements and these
requirements are not thoroughly documented you are not ready to
begin scripting. No exceptions.

• Requirements are focused in the problem domain; not the solution
domain.

• Most Schema design questions are not really schema design questions
they are really requirements questions.

Observations

• There Is No One Best Architecture.

• Architecture Is Entirely Dependent on Requirements

– Systems, Skill Sets, Security, Functionality, Flexibility, Time, Money, and above all…
Business Requirements!

• Likewise Best Practices are not Universal

• Apply Best Practices on a per situation basis

• In Presales, getting the result more rapidly is often more important than over-
thinking data modeling

• Remember that “Best Practice” will always be applied post-sale!

Objectives Review

• Defining Data Models

• Understand how QlikView is Different from SQL

• Understand Data Warehousing Theory

• Adopt Applicable QlikView Data Modeling Best Practices

Questions

