QlikView Sizing

RAM Consumption Calculation Example

		VW File e (in MB)	RAM Footprint		Per User Footprint		Users Incurrent		tal RAM umed (MB)
QVW	#1	500	2,000		200	50			12,000
QVW	#2	1,000	4,000		400		100		44,000
			\	\		\		Total:	56,000
	File Size is roughly 8% of original data size		File Size X 4 is estimated Footprint Size	ted esti		Footprint Size X 10% is estimated Per Jser Footprint			

For exact RAM Footprint save application with Compression = None

#gonnections

RAM = (RAMuser × No. users) + RAMinitial

Where

RAM] initial = QVWsizedisk x FileSizeMultiplier, this is the initial RAM footprint for any application

RAM wer = [RAMinitial x userRAMratio; this is the RAM each incremental user consumes

QVWsizedisk = SourceData x (1 - CompressionRatio); this is the size, on disk, of a QlikView file

Assumptions:

userRAMratio: range between 1%–10% FileSizeMultiplier: range between 2–10

CompressionRatio: range between 20%-90%

No. users is the number of concurrent users hitting a system, not the total number of supported users.

Example:

SourceData 50GB

CompressionRatio 90%

FileSizeMultiplier 4

userRAMratio 5%

No. of concurrent 30

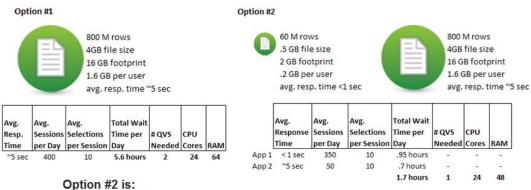
users

QVWsize_{disk} = $50GB \times (1 - 0.9) = 5GB$

 $RAM_{initial} = 5GB \times 4 = 20GB$

 $RAM_{user} = 20GB \times 5\% = 1GB$

Therefore, the RAM footprint to support 30 concurrent users in this deployment would be:


$$RAM = (1GB \times 30) + 20GB = 50GB$$

A more pragmatic approach is to understand the best practices techniques for using the various QlikView platform components to provide for a very large data size addressing while maintaining very fast user response characteristics. These techniques are detailed below:

Application Architecture

Scenario:

You have 800 million rows of data and a total user audience of 400 users. A max concurrency of around 10%, gives you 40 max users at any given time. 1 QlikView application has been identified to meet the needs.

- The same solution
- · Less than half the hardware needed
- · Average 300% improvement in response times for users

#gonnections