
www.allitebooks.com

http://www.allitebooks.org

Mastering QlikView

Unleash the power of QlikView and Qlik Sense to
make optimum use of data for Business Intelligence

Stephen Redmond

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering QlikView

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1191114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-329-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Stephen Redmond

Reviewers
Ralf Becher

Gert Jan Feick

Miguel Ángel García

Barry Harmsen

Commissioning Editor
Akram Hussain

Acquisition Editor
Kevin Colaco

Content Development Editors
Samantha Gonsalves

Azharuddin Sheikh

Technical Editors
Mrunal M. Chavan

Dennis John

Copy Editors
Maria Gould

Paul Hindle

Deepa Nambiar

Project Coordinator
Kinjal Bari

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Indexers
Priya Sane

Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Stephen Redmond is the CTO and Qlik Luminary at CapricornVentis
(http://www.capventis.com)—a QlikView Elite Partner. He is the author of
several books, including QlikView for Developers Cookbook and QlikView Server
and Publisher, both published by Packt Publishing. He is also the author of the
popular DevLogix series for SalesLogix developers.

In 2006, after many years of working with CRM systems, reporting and analysis
solutions, and data integration, Stephen started working with QlikView. Since
then, CapricornVentis has become QlikView's top partner in the UK and Ireland
territories, and with Stephen as the head of the team, they have implemented
QlikView in a wide variety of enterprise and large-business customers across
a wide range of sectors, from public sector to financial services to large retailers.

In 2014, Stephen was awarded the Luminary status by Qlik in recognition of his
product advocacy. He regularly contributes to online forums, including the Qlik
Community. His QlikView blog is at http://www.qliktips.com, and you can
follow him on Twitter at @stephencredmond where he tweets about QlikView, BI,
data visualization, technology in general, and occasionally, on marathon running.

As always, thanks to my family for their constant support—I couldn't
do this without them.
Thanks to the technical reviewers—they helped me remain honest
and make this a better publication.
Special thanks to Colman Walsh of UXTraining.ie for his permission
to reuse his photograph that so well represents a Donald Door—I have
been using it for several years in presentations and I am delighted to
be able to use it here.

www.allitebooks.com

http://www.capventis.com
http://www.qliktips.com
http://www.allitebooks.org

About the Reviewers

Ralf Becher has worked as an IT system architect and as an IT consultant since
1989 in banking, insurance, logistics, automotive, and retail sectors. He founded
TIQ Solutions GmbH in 2004 with his partners. The company specializes in modern,
quality-assured data management.

Since 2004, they have been helping their customers process, evaluate, and maintain the
quality of company data, helping them introduce, implement, and improve complex
solutions in the fields of data architecture, data integration, data migration, master data
management, metadata management, data warehousing, and Business Intelligence.

Ralf is an internationally recognized QlikView expert with a strong position in the
Qlik Community. He started working with QlikView in 2006 and has contributed
QlikView add-on solutions for data quality and data integration, especially for
connectivity in the Java and Big Data realms. He runs his QlikView data integration
blog at http://tiqview.tumblr.com/.

Gert Jan Feick studied Informatics (language, knowledge, and interaction) at
Technical University of Enschede (NL). He started his career as a project manager at a
medium-sized software development company, specializing in requirements analysis
and project management. From 2005 onward, he was responsible for the buildup of
a company in the areas of software development, reporting and visualizations, and
analysis. In 2011, he moved to Germany and became a management consultant at
Infomotion GmbH, where he is responsible for the team that works on self-service
and Agile BI as well as reporting and analysis.

He regularly contributes to online forums (including the Qlik Community), speaks at
conventions, and writes articles. You can follow him on Twitter at @gdollen where he
tweets about QlikView, Agile and self-service BI, data visualization, and other topics
in general.

www.allitebooks.com

http://tiqview.tumblr.com/
http://www.allitebooks.org

Miguel Ángel García is a Business Intelligence consultant and QlikView Solutions
Architect, based in Monterrey, Mexico. Having worked throughout many successful
QlikView implementations, from inception through implementation, and performed
across a wide variety of roles on each project; his experience and skills range from
presales to applications development and design, technical architecture, system
administration, as well as functional analysis and overall project execution.

He is the co-author of QlikView 11 for Developers, Packt Publishing, which was published
in November 2012, and its corresponding translation into Spanish, QlikView 11 para
Desarrolladores, Packt Publishing, published in December 2013. He has also worked as
a technical reviewer for several other QlikView books.

He is the cofounder of Q-On Training Center (www.q-on.bi), a place where users,
developers, and enthusiasts can get access to online QlikView training, with options
that cover all the skill levels.

He currently holds the QlikView Designer, QlikView Developer, and QlikView System
Administrator certifications issued by Qlik, for Versions 9, 10, and 11.

In 2014, he was awarded the Qlik Luminary distinction in recognition for his active
participation and collaboration in the QlikView ecosystem.

www.allitebooks.com

www.q-on.bi
http://www.allitebooks.org

Barry Harmsen is the owner of Bitmetric, a boutique consulting firm that specializes
in QlikView and is based in the Netherlands. Originally from a background of
traditional Business Intelligence, data warehousing, and performance management;
in 2008 he made the shift to QlikView and a more user-centric form of Business
Intelligence.

Since switching over to QlikView, Barry and his team have completed many successful
implementations in many different industries, from financial services to telecom and
from manufacturing to healthcare. His QlikView experience covers a wide variety of
roles and subjects including requirements analysis, design, development, architecture,
infrastructure, system administration, integration, project management, and training.

In 2012, he co-authored QlikView 11 for Developers, Packt Publishing. This book
has quickly established itself as one of the best ways to teach yourself QlikView.
He is also one of the core speakers at the Masters Summit for QlikView. This 3-day
conference for QlikView developers covers advanced topics and is designed to take
your QlikView skills to the next level. More information about the Masters Summit
can be found at www.masterssummit.com.

Barry maintains a QlikView blog at www.qlikfix.com and can be followed on
Twitter at @meneerharmsen.

www.allitebooks.com

www.masterssummit.com
www.qlikfix.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Performance Tuning and Scalability 7

Reviewing basic performance tuning techniques 9
Removing unneeded data 9

Reducing the number of rows 9
Reducing the number of columns 10

Replacing text keys with numbers 11
Resolving synthetic keys 12
Reviewing the basics 13

Generating test data 13
Generating dimension values 14
Generating fact table rows 15

Understanding how QlikView stores its data 20
A great primer 20
Looking at things from a simple level 21
Exporting the memory statistics for a document 22

Strategies to reduce the data size and improve performance 24
Optimizing field values and keys 24
Optimizing data by removing keys using ApplyMap 29
Optimizing performance by removing keys by joining tables 31
Optimizing memory by removing low cardinality fields 32

Testing chart performance for different load options 34
Turning the cache off 36
Examining the chart calculation time for different scenarios 38
Optimizing performance by creating counter fields 39
Optimizing performance by combining fact tables? 42
Optimizing your numbers 44

Optimizing chart calculation times 46

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The QlikView calculation engine 46
Creating flags for well-known conditions 47

Sorting for well-known conditions 50
Using Direct Discovery 51

Direct Discovery restrictions 52
Direct Discovery syntax 53
Looking at an example Direct Query 54

Testing scalability with JMeter 55
Obtaining the scalability tools 56
Installing JMeter 56
Installing the scalability tools 57
About the scalability tools 58

Running an example execution 58
Summary 66

Chapter 2: QlikView Data Modeling 69
Reviewing basic data modeling 70

Associating data 70
Automatically associating tables 71

Understanding synthetic keys 72
Creating composite keys 75

Realizing that facts are calculated at the level of their table 80
Joining data 82

Understanding Join and Keep 83
Concatenating rows 89
Reviewing Concatenate 89
Mapping data with ApplyMap 92
Reviewing the basic functionality of ApplyMap 92
Mapping numbers 94

Dimensional data modeling 96
Differentiating between facts and dimensions 97
Understanding the grain 98
Understanding star schemas 99
Summing with facts 101
Discovering more about facts 101

Transaction fact tables 102
Periodic snapshot fact tables 102
Factless fact tables 103

Dealing with nulls in fact tables in QlikView 103
Designing dimension tables 106

Denormalizing dimensions and conformed dimensions 106
Understanding surrogate keys 106
Dealing with missing or late arriving dimension values 107

Table of Contents

[iii]

Defining Kimball's four-step dimensional design process 108
Selecting the business process 108
Declaring the grain 109
Identifying the dimensions 109
Identifying the facts 109

Learning some useful reusable dimension methods 110
Creating a calendar dimension 110
Unwrapping hierarchies 112
Creating parent associations with HierarchyBelongsTo 115

Creating dimensional facts 116
Handling slowly changing dimensions 117

Taking the most recently changed record using FirstSortedValue 118
Using IntervalMatch with SCDs 119
Using hash to manage from/to dates 122

Dealing with multiple fact tables in one model 124
Joining the fact tables together 125

Concatenating fact tables 126
Changing the grain of a fact table 126

Linking fact tables of different grains 128
Drilling across with document chaining 131
Summary 132

Chapter 3: Best Practices for Loading Data 135
Reviewing data loading concepts 136

Getting data from anywhere 136
Loading data from QlikView 137
Loading similar files with concatenation 138
Loading dissimilar files with Concatenate and For Each 138
Understanding QlikView Data files 139
Storing tables to QVD 140
Using QVD files 141

Understanding why you should use an ETL approach 142
Speeding up overall data loading 142
Reusing extracted data in multiple documents 143
Applying common business rules across multiple documents 143
Creating conformed dimensions 143
Provisioning a self-service data layer 144

Using an ETL approach to create QVD data layers 144
Creating a StoreAndDrop subroutine 146
Extracting data 147

Creating an extractor folder structure 147
Differentiating types of scripts 148
Executing the extractors 149

Table of Contents

[iv]

Transforming data 149
Creating a transformer and model folder structure 150
Executing transformers 150

Loading data 151
Creating a UserApp folder structure 151
Executing the load step 152

Mastering loading techniques 152
Loading data incrementally 152

Establishing the script for the basic process 153
Running an incremental load when data is only added 155
Loading incrementally when data might be modified 156
Handling deletions from the source system 156
Handling situations where there is no modify date 156

Partially reloading only one part of the data model 157
Replacing a table 157
Adding new rows to a table 157
Managing script execution in partial reloads 158

Loading the content of another QVW 158
Using QlikView Expressor for ETL 159

Introducing Expressor 159
Understanding why to use Expressor for ETL 160
Understanding workspaces, libraries, projects, and artifacts 161

Creating a workspace 161
Managing extensions 162
Working with libraries and projects 164
Understanding artifacts 165

Configuring connections 166
Configuring a File connection 167
Connecting to a database 168
Creating a QVX Connector Connection 169

Configuring types and schemas 171
Adding additional Atomic types 171
Creating Composite types 172
Configuring a schema 174

Creating and packaging a basic dataflow 179
Understanding the dataflow toolbox 179
Creating the dataflow 183
Packaging the dataflow 188

Summary 188
Chapter 4: Data Governance 191

Reviewing basic concepts of data governance 192
Understanding what metadata is 192

Structural metadata 193
Descriptive metadata 194
Administrative metadata 194

Table of Contents

[v]

Establishing descriptive metadata 194
Adding document-level information 195

Documents without any additional metadata 195
Document Properties 196
Management Console 196

Naming and renaming fields 198
Guidelines to rename fields 199
Renaming fields using As 200
Using Qualify 200
Renaming fields using Rename 203
Using a mapping table to rename fields 204

Tagging fields 205
Using the Tag statement to tag a field 207

Tagging fields using a mapping table 208
Hiding fields 209

Adding field comments 210
Renaming and commenting on tables 211
Commenting in charts 212

Commenting dimensions 212
Entering an expression comment 213

Automatically renaming qualified fields 213
Extracting metadata 216

Exporting the structure 216
Extracting from QVD files 217
Extracting from QVW files 218

Deploying the QlikView Governance Dashboard 227
Managing profiles 227
Configuring the Dashboard options 228
Reviewing operational information 230
Analyzing application information 231

Summary 232
Chapter 5: Advanced Expressions 233

Reviewing basic concepts 234
Searching in QlikView 234

Searching for text 235
Wildcard search 236
Searching numeric fields 240
Automatic interpretation of searches 241
Multiple values search 241
Searching in multiple listboxes 242

Understanding bookmarks 243
Saving a bookmark 243
Managing bookmarks 245

Table of Contents

[vi]

Using variables in QlikView 245
SET versus LET 245
Using variables to hold common expressions 247
Using variables with Dollar-sign Expansion 248

Limiting calculations 249
Sum of If 249
Flag arithmetic 250
Calculations using variables 251
Data islands 252
Set Analysis 253
Explaining what we mean by a set 253

Understanding Dollar-sign Expansion 257
Following the two-step process 258

Following the steps in the script debugger 259
Following the steps in a chart expression 260
Understanding when the steps happen in chart expressions 261

Using parameters with variables and Dollar-sign Expansion 262
Using variables in expressions 262

Using advanced Set Analysis 263
Identifying the identifiers 263
Understanding that modifiers are sets 264
Set arithmetic 265
Using searches in Set Analysis 267
Using Dollar-sign Expansion with Set Analysis 268
Comparing to other fields 268

Direct field comparison 269
Using Concat with Dollar-sign Expansion 269
Using the P and E element functions 269

Set Analysis with Alternate States 270
Using Alternate States as identifiers 270
Comparing fields between states 270

Calculating vertically 270
Using inter-record and range functions 271
Applying the Total qualifier 273
Creating advanced aggregations with Aggr 275

Using Aggr to calculate a control chart 277
Calculated dimensions 278
No to nodistinct 279

Summary 281
Chapter 6: Advanced Scripting 283

Reviewing the basic concepts 284
Using Table Files Wizard 284

Using relative paths 285
Delimited files 286
Fixed width files 288

Table of Contents

[vii]

XML files 289
HTML files 291
QVD/QVX files 292

Connecting to databases 292
Using the Connect button 293
Understanding the Connect To statement 295
Explaining the Force 32 Bit option 296
The Select wizard 297

Counting records 299
RecNo 299
RowNo 300
FieldValueCount 302
NoOfRows 302
NoOfColumns 302

Loading data quickly 302
Understanding compression settings 303
Optimal loading from QVD 304

Using an Exists clause 305
Preloading fields into QVDs 306

Applying variables and the Dollar-sign Expansion in the script 308
Examining common usage 310

Holding dates 311
Holding paths 312

Examining variable values during reloads 313
Nesting Dollar-sign Expansions 314
Passing parameters to variables – macro functions 315
Subroutines 316

Using control structures 317
Branching with conditional statements 317

If … Then … ElseIf 317
A note about conditional functions 318
Switch … Case 319
When and Unless 320

Looping in the script 320
AutoGenerate 320
For … Next loops 321
For Each … Next loops 323
Do … Loop 325

Exiting 325
Exiting the script 325
Exiting other constructs 326

Using variables for error handling 326
ErrorMode 327

ScriptError 327
ScriptErrorCount and ScriptErrorList 327

Table of Contents

[viii]

Examining advanced Table File Wizard options 328
Enabling a transformation step 328

Garbage 330
Fill 330
Column 331
Context 331
Unwrap 332
Rotate 332

Using the Crosstable wizard 332
Looking at data from different directions 335

Putting things first 335
First 336
FirstSortedValue 336

Looking backwards 337
Previous 337
Peek 338

Reusing code 340
Summary 341

Chapter 7: Visualizing Data 343
Reviewing the history of data visualization 344

Beginning the story 344
Analyzing geometry 345

Grecian influences 345
French discord 346

Telling stories with diagrams 347
Educating with charts 348
Inventing new charts 349
Creating infographics 351
Using data visualization to persuade 353

Bringing the story up to date 354
Following the leaders 355

Understanding the audience 357
Matching patterns 357
Counting numbers 358
Estimating numbers 359
Understanding picture superiority 363
Drawing conclusions 363

Designing effective visualizations 364
Understanding affordances 364
Grading your screen's real estate 365

Nielsen's F 365
The Gutenberg diagram 366
Preference for the right 367

Table of Contents

[ix]

Positioning screen elements 367
Charts on the left 367
Listboxes on the right 367
Dates on top 368
Using the layout grid 368

Thinking quantitatively 370
Understanding the SFW question 370

Designing dashboards 371
Choosing charts 372

Categorical comparison 372
Trend analysis 374
Comparing measures 375
Low cardinality, part-to-whole comparison 375
Tabular information 377

Using color 378
Color should have meaning 378
What does RAG mean? 379
The ink-to-data ratio 380
Color blindness 382

Using maps 382
Summary 385

Index 387

Preface
This is a book about mastery. But what does this mean? What does being a QlikView
master mean?

When I wrote QlikView for Developers Cookbook, Packt Publishing, I started the preface
with the sentence:

"There is no substitute for experience."

When it comes to QlikView, experience is the thing that makes a difference. Experience
is the difference between the developers who can create good applications and the
consultants who can create real business solutions that solve real business problems.

I have been working with QlikView since 2006, and in this time, I have created some
fantastic solutions. I also created applications that I cringe to look at today. I like to
think that I have mastered the subject, even though I am still learning.

At CapricornVentis, I work with one of the brightest bunch of consultants; it has
ever been my pleasure to work with them. I get to teach a lot but I also get to learn
a tremendous amount from these guys. We are constantly pushing the boundaries
of the product to get to the right solution. As a beginner in this area, I would have
wanted to work for an organization like CapricornVentis, where I could really learn
and grow as a consultant.

Let's be clear; I do not know every little detail about QlikView, but I do know most
of them. What I think I know, and know really well, are the important things to
know about when creating QlikView solutions. This knowledge is what I have
tried to distil down into this book.

You won't be a master by just reading this book. As Alfred Korzybski famously stated:

"The map is not the territory."

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

This book is not an ultimate mastering guide, rather is a like a map that guides us
towards our common destination—to become a QlikView master. Study the map
well and you will get there.

Qlik Sense
During the development of this book, Qlik released their next generation product,
Qlik Sense. Qlik Sense is not, currently, a replacement product for QlikView, and
Qlik has announced that they will have a two-product strategy and sell QlikView
for guided BI applications and Qlik Sense for self-service BI applications. A new
version, QlikView 12.0, is slated for release in the second half of 2015.

While Qlik Sense is a new product, it is built on the same heritage as QlikView.
There is a new data engine, QIX, that stores the data in a format more columnar
than that of QlikView. However, the inference engine is still the same (green, white,
and gray). The script syntax is still the same; in fact, we can use QlikView scripts in
Qlik Sense. The frontend is very different because it is based on a new web design,
but the expression syntax is still the same.

Therefore, much of what is written in this book about QlikView will still apply to
Qlik Sense. Anyone who masters QlikView will be well on their way to mastering
Qlik Sense.

What this book covers
Chapter 1, Performance Tuning and Scalability, is where we look at understanding how
QlikView stores its data so that we can optimize that storage in our applications.
We will also look at topics such as Direct Discovery and testing implementations
using JMeter.

Chapter 2, QlikView Data Modeling, looks in detail at dimensional data modeling and
learning about fact and dimension tables and using best practices from Ralph Kimball
in QlikView. We also learn about how to handle slowly changing dimensions (SCDs),
multiple fact tables, and drilling across with document chaining.

Chapter 3, Best Practices for Loading Data, is where we look at implementing ETL
strategies with QVD files. We also introduce QlikView Expressor.

Chapter 4, Data Governance, looks at areas such as implementing metadata in QlikView
and managing our implementation with QlikView Governance Dashboard.

Chapter 5, Advanced Expressions, is where we look at areas such as the Dollar-sign
Expansion, set analysis, and vertical calculations using Total and Aggr.

Preface

[3]

Chapter 6, Advanced Scripting, looks at optimizing loads, Dollar-sign Expansion in the
script, and control structures. We also introduce the concept of code reuse.

Chapter 7, Visualizing Data, is where we look at the historical background to data
visualization; we gain an understanding of the human relationship with numbers
and learn some good design principles to bring to our applications.

What you need for this book
You need a copy of QlikView Desktop, which you can download for free from
http://www.qlikview.com/download. After this, you shouldn't need anything
else. You can also test the examples in Qlik Sense.

To demonstrate the different techniques and functions, I will usually get you to
load a table of data. We do this using the INLINE function. For example:

Load * Inline [
 Field1, Field2
 Value1, Value2
 Value3, Value4
];

This will load a table with two fields, Field1 and Field2, and two rows of data.

Most of the time, this type of table is enough for what we need to do. In a few
examples, where I need you to use more data than that, we will use publicly
available data sources.

Who this book is for
This is not a beginner's book. This book is for anyone who has learned QlikView
or Qlik Sense—either from formal training, online resources, or QlikView 11 for
Developers, Miguel García and Barry Harmsen, Packt Publishing—and now wants
to take their learning to a higher level.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

http://www.qlikview.com/download

Preface

[4]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In the QVScriptGenTool_0_7 64Bit\Analyzer folder there is a ZIP file called
FolderTemplate.zip."

A block of code is set as follows:

Sales:
Load * INLINE [
 Country, Sales
 USA, 1000
 UK, 940
 Japan, 543
];

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

Sales:
Load * INLINE [
 Country, Sales
 USA, 1000
 UK, 940
 Japan, 543
];

Any command-line input or output is written as follows:

C:\Program Files\QlikView\qv.exe

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Click on the Execution tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/ support
http://www.packtpub.com/ support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across
all media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on
the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Performance Tuning
and Scalability

"The way Moore's Law occurs in computing is really unprecedented in other walks
of life. If the Boeing 747 obeyed Moore's Law, it would travel a million miles an
hour, it would be shrunken down in size, and a trip to New York would cost about
five dollars. Those enormous changes just aren't part of our everyday experience."

 — Nathan Myhrvold, former Chief Technology Officer at Microsoft, 1995

The way Moore's Law has benefitted QlikView is really unprecedented amongst
other BI systems.

QlikView began life in 1993 in Lund, Sweden. Originally titled "QuickView", they
had to change things when they couldn't obtain a copyright on that name, and thus
"QlikView" was born.

After years of steady growth, something really good happened for QlikView around
2005/2006—the Intel x64 processors became the dominant processors in Windows
servers. QlikView had, for a few years, supported the Itanium version of Windows;
however, Itanium never became a dominant server processor. Intel and AMD started
shipping the x64 processors in 2004 and, by 2006, most servers sold came with an x64
processor—whether the customer wanted 64-bit or not. Because the x64 processors
could support either x86 or x64 versions of Windows, the customer didn't even
have to know. Even those customers who purchased the x64 version of Windows
2003 didn't really know this because all of their x86 software would run just as well
(perhaps with a few tweaks).

Performance Tuning and Scalability

[8]

But x64 Windows was fantastic for QlikView! Any x86 process is limited to a
maximum of 2 GB of physical memory. While 2 GB is quite a lot of memory, it wasn't
enough to hold the volume of data that a true enterprise-class BI tool needed to handle.
In fact, up until version 9 of QlikView, there was an in-built limitation of about 2
billion rows (actually, 2 to the power of 31) in the number of records that QlikView
could load. On x86 processors, QlikView was really confined to the desktop.

x64 was a very different story. Early Intel implementations of x64 could address
up to 64 GB of memory. More recent implementations allow up to 256 TB, although
Windows Server 2012 can only address 4 TB. Memory is suddenly less of an obstacle
to enterprise data volumes.

The other change that happened with processors was the introduction of multi-core
architecture. At the time, it was common for a high-end server to come with 2 or 4
processors. Manufacturers came up with a method of putting multiple processors,
or cores, on one physical processor. Nowadays, it is not unusual to see a server with
32 cores. High-end servers can have many, many more.

One of QlikView's design features that benefitted from this was that their calculation
engine is multithreaded. That means that many of QlikView's calculations will execute
across all available processor cores. Unlike many other applications, if you add more
cores to your QlikView server, you will, in general, add more performance.

So, when it comes to looking at performance and scalability, very often, the first thing
that people look at to improve things is to replace the hardware. This is valid of course!
QlikView will almost always work better with newer, faster hardware. But before you
go ripping out your racks, you should have a good idea of exactly what is going on
with QlikView. Knowledge is power; it will help you tune your implementation to
make the best use of the hardware that you already have in place.

The following are the topics we'll be covering in this chapter:

• Reviewing basic performance tuning techniques
• Generating test data
• Understanding how QlikView stores its data
• Looking at strategies to reduce the data size and to improve performance
• Using Direct Discovery
• Testing scalability with JMeter

Chapter 1

[9]

Reviewing basic performance tuning
techniques
There are many ways in which you may have learned to develop with QlikView. Some
of them may have talked about performance and some may not have. Typically, you
start to think about performance at a later stage when users start complaining about
slow results from a QlikView application or when your QlikView server is regularly
crashing because your applications are too big.

In this section, we are going to quickly review some basic performance tuning
techniques that you should, hopefully, already be aware of. Then, we will start
looking at how we can advance your knowledge to master level.

Removing unneeded data
Removing unneeded data might seem easy in theory, but sometimes it is not so easy
to implement—especially when you need to negotiate with the business. However,
the quickest way to improve the performance of a QlikView application is to remove
data from it. If you can reduce your number of fact rows by half, you will vastly
improve performance. The different options are discussed in the next sections.

Reducing the number of rows
The first option is to simply reduce the number of rows. Here we are interested in
Fact or Transaction table rows—the largest tables in your data model. Reducing
the number of dimension table rows rarely produces a significant performance
improvement.

The easiest way to reduce the number of these rows is usually to limit the table by a
value such as the date. It is always valuable to ask the question, "Do we really need
all the transactions for the last 10 years?" If you can reduce this, say to 2 years, then
the performance will improve significantly.

We can also choose to rethink the grain of the data—to what level of detail we hold the
information. By aggregating the data to a higher level, we will often vastly reduce the
number of rows.

Performance Tuning and Scalability

[10]

Reducing the number of columns
The second option is to reduce the width of tables—again, especially Fact or
Transaction tables. This means looking at fields that might be in your data model
but do not actually get used in the application. One excellent way of establishing
this is to use the Document Analyzer tool by Rob Wunderlich to examine your
application (http://robwunderlich.com/downloads).

As well as other excellent uses, Rob's tool looks at multiple areas of an application
to establish whether fields are being used or not. It will give you an option to view
fields that are not in use and has a useful DROP FIELD Statements listbox from
which you can copy the possible values. The following screenshot shows an
example (from the default document downloadable from Rob's website):

Adding these DROP FIELD statements into the end of a script makes it very easy to
remove fields from your data model without having to dive into the middle of the
script and try to remove them during the load—which could be painful.

There is a potential issue here; if you have users using collaboration objects—creating
their own charts—then this tool will not detect that usage. However, if you use the
DROP FIELD option, then it is straightforward to add a field back if a user complains
that one of their charts is not working.

http://robwunderlich.com/downloads

Chapter 1

[11]

Of course, the best practice would be to take the pain and remove the fields from
the script by either commenting them out or removing them completely from their
load statements. This is more work, because you may break things and have to do
additional debugging, but it will result in a better performing script.

Replacing text keys with numbers
Often, you will have a text value in a key field, for example, something like an
account number that has alphanumeric characters. These are actually quite poor
for performance compared to an integer value and should be replaced with
numeric keys.

There is some debate here about whether this makes a difference
at all, but the effect is to do with the way the data is stored under
the hood, which we will explore later. Generated numeric keys
are stored slightly differently than text keys, which makes things
work better.

The strategy is to leave the text value (account number) in the dimension table for
use in display (if you need it!) and then use the AutoNumber function to generate a
numeric value—also called a surrogate key—to associate the two tables.

For example, replace the following:

Account:
Load
 AccountId,
 AccountName,
 …
From Account.qvd (QVD);

Transaction:
Load
 TransactionId,
 AccountId,
 TransactionDate,
 …
From Transaction.qvd (QVD);

With the following:

Account:
Load
 AccountId,

www.allitebooks.com

http://www.allitebooks.org

Performance Tuning and Scalability

[12]

 AutoNumber(AccountId) As Join_Account,
 AccountName,
 …
From Account.qvd (QVD);

Transaction:
Load
 TransactionId,
 AutoNumber(AccountId) As Join_Account,
 TransactionDate,
 …
From Transaction.qvd (QVD);

The AccountId field still exists in the Account table for display purposes, but the
association is on the new numeric field, Join_Account.

We will see later that there is some more subtlety to this that we need to be aware of.

Resolving synthetic keys
A synthetic key, caused when tables are associated on two or more fields, actually
results in a whole new data table of keys within the QlikView data model.

The following screenshot shows an example of a synthetic key using Internal Table
View within Table Viewer in QlikView:

In general, it is recommended to remove synthetic keys from your data model by
generating your own keys (for example, using AutoNumber):

Load
 AutoNumber(CountryID & '-' & CityID) As ClientID,
 Date,

Chapter 1

[13]

 Sales
From Fact.qvd (qvd);

The following screenshot shows the same model with the synthetic key resolved
using the AutoNumber method:

This removes additional data in the data tables (we'll cover more on this later in the
chapter) and reduces the number of tables that queries have to traverse.

Reviewing the basics
So, with a basic understanding of QlikView development, you already have a good
idea of how to improve performance. After reading the rest of this chapter, you will
have enough information to seriously move forward and master this subject.

Generating test data
It is enormously useful to be able to quickly generate test data so that we can
create QlikView applications and test different aspects of development and
discover how different development methods work. By creating our own set
of data, we can abstract problems away from the business issues that we are
trying to solve because the data is not connected to those problems. Instead,
we can resolve the technical issue underlying the business issue. Once we have
resolved that issue, we will have built an understanding that allows us to more
quickly resolve the real problems with the business data.

We might contemplate that if we are developers who only have access to a certain
dataset, then we will only learn to solve the issues in that dataset. For true mastery,
we need to be able to solve issues in many different scenarios, and the only way
that we can do that is to generate our own test data to do that with.

Performance Tuning and Scalability

[14]

Generating dimension values
Dimension tables will generally have lower numbers of records; there are a number
of websites online that will generate this type of data for you.

For quite a while, I used http://www.generatedata.com to generate random data
such as company names, and so on. However, in a recent blog entry by Barry Harmsen
(Barry is the co-author of QlikView 11 for Developers, Packt Publishing) at http://www.
qlikfix.com, he mentioned http://www.mockaroo.com as a resource for generating
such tables.

The following screenshot demonstrates setting up a Customer extract in Mockaroo:

This allows us to create 1,000 customer records that we can include in our QlikView
data model. The extract is in the CSV format, so it is quite straightforward to load
into QlikView.

http://www.generatedata.com
http://www.qlikfix.com
http://www.qlikfix.com
http://www.mockaroo.com

Chapter 1

[15]

Generating fact table rows
While we might often abdicate the creation of test dimension tables to a third-party
website like this, we should always try and generate the Fact table data ourselves.

A good way to do this is to simply generate rows with a combination of the
AutoGenerate() and Rand() functions.

For even more advanced use cases, we can look at using statistical functions such
as NORMINV to generate normal distributions. There is a good article on this written
by Henric Cronström on Qlik Design Blog at http://community.qlik.com/blogs/
qlikviewdesignblog/2013/08/26/monte-carlo-methods.

We should be aware of the AutoGenerate() function that will just simply generate
empty rows of data. We can also use the Rand() function to generate a random
number between 0 and 1 (it works both in charts and in the script). We can then
multiply this value by another number to get various ranges of values.

In the following example, we load a previously generated set of dimension tables—
Customer, Product, and Employee. We then generate a number of order header and
line rows based on these dimensions, using random dates in a specified range.

First, we will load the Product table and derive a couple of mapping tables:

// Load my auto generated dimension files
Product:
LOAD ProductID,
 Product,
 CategoryID,
 SupplierID,
 Money#(CostPrice, '$#,##0.00', '.', ',') As CostPrice,
 Money#(SalesPrice, '$#,##0.00', '.', ',') As SalesPrice
FROM
Products.txt
(txt, utf8, embedded labels, delimiter is '\t', msq);

Product_Cost_Map:
Mapping Load
 ProductID,
 Num(CostPrice)
Resident Product;

Product_Price_Map:
Mapping Load

http://community.qlik.com/blogs/qlikviewdesignblog/2013/08/26/monte-carlo-methods
http://community.qlik.com/blogs/qlikviewdesignblog/2013/08/26/monte-carlo-methods

Performance Tuning and Scalability

[16]

 ProductID,
 Num(SalesPrice)
Resident Product;

Now load the other dimension tables:

Customer:
LOAD CustomerID,
 Customer,
 City,
 Country,
 Region,
 Longitude,
 Latitude,
 Geocoordinates
FROM
Customers.txt
(txt, codepage is 1252, embedded labels, delimiter is '\t', msq);

Employee:
LOAD EmployeeID,
 Employee,
 Grade,
 SalesUnit
FROM
Employees.txt
(txt, codepage is 1252, embedded labels, delimiter is '\t', msq)
Where Match(Grade, 0, 1, 2, 3); // Sales people

We will store the record counts from each table in variables:

// Count the ID records in each table
Let vCustCount=FieldValueCount('CustomerID');
Let vProdCount=FieldValueCount('ProductID');
Let vEmpCount=FieldValueCount('EmployeeID');

We now generate some date ranges to use in the data calculation algorithm:

// Work out the days
Let vStartYear=2009; // Arbitrary - change if wanted
Let vEndYear=Year(Now()); // Generate up to date data
// Starting the date in April to allow
// offset year testing
Let vStartDate=Floor(MakeDate($(vStartYear),4,1));
Let vEndDate=Floor(MakeDate($(vEndYear),3,31));
Let vNumDays=vEndDate-vStartDate+1;

Chapter 1

[17]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

Run a number of iterations to generate data. By editing the number of iterations, we
can increase or decrease the amount of data generated:

// Create a loop of 10000 iterations
For i=1 to 10000

 // "A" type records are for any date/time

 // Grab a random employee and customer
 Let vRnd = Floor(Rand() * $(vEmpCount));
 Let vEID = Peek('EmployeeID', $(vRnd), 'Employee');
 Let vRnd = Floor(Rand() * $(vCustCount));
 Let vCID = Peek('CustomerID', $(vRnd), 'Customer');

 // Create a date for any Time of Day 9-5
 Let vOrderDate = $(vStartDate) + Floor(Rand() * $(vNumDays)) +
((9/24) + (Rand()/3));

 // Calculate a random freight amount
 Let vFreight = Round(Rand() * 100, 0.01);

 // Create the header record
 OrderHeader:
 Load
 'A' & $(i) As OrderID,
 $(vOrderDate) As OrderDate,
 $(vCID) As CustomerID,
 $(vEID) As EmployeeID,
 $(vFreight) As Freight
 AutoGenerate(1);

 // Generate Order Lines

 // This factor allows us to generate a different number of
 // lines depending on the day of the week
 Let vWeekDay = Num(WeekDay($(vOrderDate)));

http://www.packtpub.com
http://www.packtpub.com/support

Performance Tuning and Scalability

[18]

 Let vDateFactor = Pow(2,$(vWeekDay))*(1-(Year(Now())-
Year($(vOrderDate)))*0.05);

 // Calculate the random number of lines
 Let vPCount = Floor(Rand() * $(vDateFactor)) + 1;

 For L=1 to $(vPCount)
 // Calculate random values
 Let vQty = Floor(Rand() * (50+$(vDateFactor))) + 1;
 Let vRnd = Floor(Rand() * $(vProdCount));
 Let vPID = Peek('ProductID', $(vRnd), 'Product');
 Let vCost = ApplyMap('Product_Cost_Map', $(vPID), 1);
 Let vPrice = ApplyMap('Product_Price_Map', $(vPID), 1);

 OrderLine:
 Load
 'A' & $(i) As OrderID,
 $(L) As LineNo,
 $(vPID) As ProductID,
 $(vQty) As Quantity,
 $(vPrice) As SalesPrice,
 $(vCost) As SalesCost,
 $(vQty)*$(vPrice) As LineValue,
 $(vQty)*$(vCost) As LineCost
 AutoGenerate(1);

 Next

 // "B" type records are for summer peak

 // Summer Peak - Generate additional records for summer
 // months to simulate a peak trading period
 Let vY = Year($(vOrderDate));
 Let vM = Floor(Rand()*2)+7;
 Let vD = Day($(vOrderDate));
 Let vOrderDate = Floor(MakeDate($(vY),$(vM),$(vD))) + ((9/24) +
(Rand()/3));

 if Rand() > 0.8 Then

 // Grab a random employee and customer
 Let vRnd = Floor(Rand() * $(vEmpCount));
 Let vEID = Peek('EmployeeID', $(vRnd), 'Employee');
 Let vRnd = Floor(Rand() * $(vCustCount));

Chapter 1

[19]

 Let vCID = Peek('CustomerID', $(vRnd), 'Customer');

 // Calculate a random freight amount
 Let vFreight = Round(Rand() * 100, 0.01);
 // Create the header record
 OrderHeader:
 Load
 'B' & $(i) As OrderID,
 $(vOrderDate) As OrderDate,
 $(vCID) As CustomerID,
 $(vEID) As EmployeeID,
 $(vFreight) As Freight
 AutoGenerate(1);

 // Generate Order Lines

 // This factor allows us to generate a different number of
 // lines depending on the day of the week
 Let vWeekDay = Num(WeekDay($(vOrderDate)));
 Let vDateFactor = Pow(2,$(vWeekDay))*(1-(Year(Now())-
Year($(vOrderDate)))*0.05);

 // Calculate the random number of lines
 Let vPCount = Floor(Rand() * $(vDateFactor)) + 1;

 For L=1 to $(vPCount)

 // Calculate random values
 Let vQty = Floor(Rand() * (50+$(vDateFactor))) + 1;
 Let vRnd = Floor(Rand() * $(vProdCount));
 Let vPID = Peek('ProductID', $(vRnd), 'Product');
 Let vCost = ApplyMap('Product_Cost_Map', $(vPID), 1);
 Let vPrice = ApplyMap('Product_Price_Map', $(vPID), 1);

 OrderLine:
 Load
 'B' & $(i) As OrderID,
 $(L) As LineNo,
 $(vPID) As ProductID,
 $(vQty) As Quantity,
 $(vPrice) As SalesPrice,
 $(vCost) As SalesCost,
 $(vQty)*$(vPrice) As LineValue,
 $(vQty)*$(vCost) As LineCost
 AutoGenerate(1);

Performance Tuning and Scalability

[20]

 Next

 End if
Next

// Store the Generated Data to QVD
Store OrderHeader into OrderHeader.qvd;
Store OrderLine into OrderLine.qvd;

Barry Harmsen, co-author of QlikView 11 for Developers,
Packt Publishing, recommends a slightly different method for
generating seasonal variation. By using the Sin() or Cos()
functions to generate a table containing the number of records
to generate for each day, we can loop across this table and use
these values to auto-generate rows for the fact table.

Understanding how QlikView stores
its data
QlikView is really good at storing data. It operates on data in memory, so being
able to store a lot of data in a relatively small amount of memory gives the product
a great advantage—especially as Moore's Law continues to give us bigger and
bigger servers.

Understanding how QlikView stores its data is fundamental in mastering QlikView
development. Writing load script with this understanding will allow you to load
data in the most efficient way so that you can create the best performing applications.
Your users will love you.

A great primer
A great primer on how QlikView stores its data is available on Qlik Design
Blog, written by Henric Cronström (http://community.qlik.com/blogs/
qlikviewdesignblog/2012/11/20/symbol-tables-and-bit-stuffed-pointers).

Henric joined QlikView in 1994, so he knows quite
a bit about exactly how it works.

http://community.qlik.com/blogs/qlikviewdesignblog/2012/11/20/symbol-tables-and-bit-stuffed-pointers
http://community.qlik.com/blogs/qlikviewdesignblog/2012/11/20/symbol-tables-and-bit-stuffed-pointers

Chapter 1

[21]

Looking at things from a simple level
From a simple level, consider the following small table:

First name Surname Country
John Smith USA
Jane Smith USA
John Doe Canada

For the preceding table, QlikView will create three symbol tables like the following:

Index Value
1010 John
1011 Jane

Index Value
1110 Smith
1111 Doe

Index Value
110 USA
111 Canada

And the data table will look like the following:

First name Surname Country
1010 1110 110
1011 1110 110
1010 1111 111

This set of tables will take up less space than the original data table for the following
three reasons:

• The binary indexes are bit-stuffed in the data table—they only take up as much
space as needed.

• The binary index, even though repeated, will take up less space than the text
values. The Unicode text just for "USA" takes up several bytes—the binary
index takes less space than that.

• Each, larger, text value is only stored once in the symbol tables.

Performance Tuning and Scalability

[22]

So, to summarize, each field in the data model will be stored in a symbol table (unless,
as we will see later, it is a sequential integer value) that contains the unique values and
an index value. Every table that you create in the script—including any synthetic key
tables—will be represented as a data table containing just the index pointers.

Because the data table indexes are bit-stuffed, and because data is
stored in bytes, adding another bit or two to the indexes may not
actually increase the overall width of a data table record.

Exporting the memory statistics for a
document
To help us understand what is going on in a particular QlikView document, we can
export details about where all the memory is being used. This export file will tell us
how much memory is being used by each field in the symbol tables, the data tables,
chart objects, and so on.

Perform the following steps to export the memory statistics for a document:

1. To export the memory statistics, you need to open Document Properties
from the Settings menu (Ctrl + Alt + D). On the General tab, click on the
Memory Statistics button, as shown in the following screenshot:

Chapter 1

[23]

2. After you click on the button, you will be prompted to enter file information.
Once you have entered the path and filename, the file will be exported. It is a
tab-delimited data file:

3. The easiest way to analyze this file is to import it into a new
QlikView document:

Performance Tuning and Scalability

[24]

We can now see exactly how much space our data is taking up in the symbol
tables and in the data tables. We can also look at chart calculation performance to
see whether there are long running calculations that we need to tune. Analyzing
this data will allow us to make valuable decisions about where we can improve
performance in our QlikView document.

One thing that we need to be cognizant of is that the memory usage and calculation
time of charts will only be available if that chart has actually been opened. The
calculation time of the charts may also not be accurate as it will usually only be
correct if the chart has just been opened for the first time—subsequent openings
and changes of selection will most probably be calculated from the cache, and a
cache execution should execute a lot quicker than a non-cached execution. Other
objects may also use similar expressions, and these will therefore already be cached.
We can turn the cache off—although only for testing purposes, as it can really kill
performance. We will look at this in the Testing chart performance for different load
options section.

Strategies to reduce the data size and
improve performance
Using some of the test data that we have generated, or any other data that
you might want, we can discover more about how QlikView handles different
scenarios. Understanding these different situations will give you real mastery
over data load optimization.

Optimizing field values and keys
To begin with, let's see what happens when we load two largish tables that are
connected by a key. So, let's ignore the dimension tables and load the order data
using a script like the following:

Order:
LOAD OrderID,
 OrderDate,
 CustomerID,
 EmployeeID,
 Freight
FROM
[..\Scripts\OrderHeader.qvd]
(qvd);

Chapter 1

[25]

OrderLine:
LOAD OrderID,
 LineNo,
 ProductID,
 Quantity,
 SalesPrice,
 SalesCost,
 LineValue,
 LineCost
FROM
[..\Scripts\OrderLine.qvd]
(qvd);

The preceding script will result in a database memory profile that looks like the
following. In the following screenshot, Database has been selected for Class:

There are some interesting readings in this table. For example, we can see that when
the main data table—OrderLine—is stored with just its pointer records, it takes up
just 923,085 bytes for 102,565 records. That is an average of only 9 bytes per record.
This shows the space benefit of the bit-stuffed pointer mechanism as described in
Henric's blog post.

Performance Tuning and Scalability

[26]

The largest individual symbol table is the OrderDate field. This is very typical of a
TimeStamp field, which will often be highly unique, have long decimal values, and
have the Dual text value, and so often takes up a lot of memory—28 bytes per value.

The number part of a TimeStamp field contains an integer representing the date
(number of days since 30th December 1899) and a decimal representing the time.
So, let's see what happens with this field if we turn it into just an integer—a common
strategy with these fields as the time portion may not be important:

Order:
LOAD OrderID,
 Floor(OrderDate) As DateID,
 ...

This changes things considerably:

The number of unique values has been vastly reduced, because the highly unique
date and time values have been replaced with a much lower cardinality (2171) date
integer, and the amount of memory consumed is also vastly reduced as the integer
values are only taking 8 bytes instead of the 28 being taken by each value of the
TimeStamp field.

The next field that we will pay attention to is OrderID. This is the key field, and
key fields are always worth examining to see whether they can be improved. In our
test data, the OrderID field is alphanumeric—this is not uncommon for such data.
Alphanumeric data will tend to take up more space than numeric data, so it is a
good idea to convert it to integers using the AutoNumber function.

Chapter 1

[27]

AutoNumber accepts a text value and will return a sequential integer. If you pass the
same text value, it will return the same integer. This is a great way of transforming
alphanumeric ID values into integers. The code will look like the following:

Order:
LOAD AutoNumber(OrderID) As OrderID,
 Floor(OrderDate) As DateID,
 ...

OrderLine:
LOAD AutoNumber(OrderID) As OrderID,
 LineNo,
 ...

This will result in a memory profile like the following:

The OrderID field is now showing as having 0 bytes! This is quite interesting
because what QlikView does with a field containing sequential integers is that it
does not bother to store the value in the symbol table at all; it just uses the value
as the pointer in the data table. This is a great design feature and gives us a good
strategy for reducing data sizes.

We could do the same thing with the CustomerID and EmployeeID fields:

Order:
LOAD AutoNumber(OrderID) As OrderID,
 Floor(OrderDate) As DateID,
 AutoNumber(CustomerID) As CustomerID,
 AutoNumber(EmployeeID) As EmployeeID,
 ...

Performance Tuning and Scalability

[28]

That has a very interesting effect on the memory profile:

Our OrderID field is now back in the Symbols table. The other two tables are still
there too. So what has gone wrong?

Because we have simply used the AutoNumber function across each field, now none
of them are perfectly sequential integers and so do not benefit from the design feature.
But we can do something about this because the AutoNumber function accepts a second
parameter—an ID—to identify different ranges of counters. So, we can rejig the script
in the following manner:

Order:
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 Floor(OrderDate) As DateID,
 AutoNumber(CustomerID, 'Customer') As CustomerID,
 AutoNumber(EmployeeID, 'Employee') As EmployeeID,
 ...

OrderLine:
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 LineNo,
 ...

This should give us the following result:

Chapter 1

[29]

This is something that you should consider for all key values, especially from a
modeling best practice point of view. There are instances when you want to retain
the ID value for display or search purposes. In that case, a copy of the value should
be kept as a field in a dimension table and the AutoNumber function used on the
key value.

It is worth noting that it is often good to be able to see the
key associations—or lack of associations—between two
tables, especially when troubleshooting data issues. Because
AutoNumber obfuscates the values, it makes that debugging
a bit harder. Therefore, it can be a good idea to leave the
application of AutoNumber until later on in the development
cycle, when you are more certain of the data sources.

Optimizing data by removing keys using
ApplyMap
For this example, we will use some of the associated dimension tables—Category
and Product. These are loaded in the following manner:

Category:
LOAD CategoryID,
 Category
FROM
[..\Scripts\Categories.txt]
(txt, codepage is 1252, embedded labels, delimiter is '\t', msq);

Product:
LOAD ProductID,
 Product,
 CategoryID,
 SupplierID,
 CostPrice,
 SalesPrice
FROM
[..\Scripts\Products.txt]
(txt, codepage is 1252, embedded labels, delimiter is '\t', msq);

Performance Tuning and Scalability

[30]

This has a small memory profile:

The best way to improve the performance of these tables is to remove the CategoryID
field by moving the Category value into the Product table. When we have small
lookup tables like this, we should always consider using ApplyMap:

Category_Map:
Mapping
LOAD CategoryID,
 Category
FROM
[..\Scripts\Categories.txt]
(txt, codepage is 1252, embedded labels, delimiter is '\t', msq);

Product:
LOAD ProductID,
 Product,
 //CategoryID,
 ApplyMap('Category_Map', CategoryID, 'Other') As Category,
 SupplierID,
 CostPrice,
 SalesPrice
FROM
[..\Scripts\Products.txt]
(txt, codepage is 1252, embedded labels, delimiter is '\t', msq);

Chapter 1

[31]

By removing the Symbols table and the entry in the data table, we have reduced the
amount of memory used. More importantly, we have reduced the number of joins
required to answer queries based on the Category table:

Optimizing performance by removing keys by
joining tables
If the associated dimension table has more than two fields, it can still have its data
moved into the primary dimension table by loading multiple mapping tables; this
is useful if there is a possibility of many-to-many joins. You do have to consider,
however, that this does make the script a little more complicated and, in many
circumstances, it is a better idea to simply join the tables.

For example, suppose that we have the previously mentioned Product table and
an associated Supplier table that is 3,643 bytes:

By joining the Supplier table to the Product table and then dropping SupplierID,
we might reduce this down to, say, 3,499 bytes, but more importantly, we improve
the query performance:

Join (Product)
LOAD SupplierID,

www.allitebooks.com

http://www.allitebooks.org

Performance Tuning and Scalability

[32]

 Company As Supplier,
 ...

Drop Field SupplierID;

Optimizing memory by removing low
cardinality fields
Joining tables together is not always the best approach from a memory point of view.
It could be possible to attempt to create the ultimate joined table model of just having
one table containing all values. This will work, and query performance should, in
theory, be quite fast. However, the way QlikView works is the wider and longer
the table you create, the wider and longer the underlying pointer data table will be.
Let's consider an example.

Quite often, there will be a number of associated fields in a fact table that have a
lower cardinality (smaller number of distinct values) than the main keys in the fact
table. A quite common example is having date parts within the fact table. In that
case, it can actually be a good idea to remove these values from the fact table and
link them via a shared key. So, for example, consider we have an Order table loaded
in the following manner:

Order:
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 Floor(OrderDate) As DateID,
 Year(OrderDate) As Year,
 Month(OrderDate) As Month,
 Day(OrderDate) As Day,
 Date(MonthStart(OrderDate), 'YYYY-MM') As YearMonth,
 AutoNumber(CustomerID, 'Customer') As CustomerID,
 AutoNumber(EmployeeID, 'Employee') As EmployeeID,
 Freight
FROM
[..\Scripts\OrderHeader.qvd]
(qvd);

Chapter 1

[33]

This will give a memory profile like the following:

We can see the values for Year, Month, and Day have a very low count. It is worth
noting here that Year takes up a lot less space than Month or Day; this is because Year
is just an integer and the others are Dual values that have text as well as numbers.

Let's modify the script to have the date fields in a different table in the
following manner:

Order:
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 Floor(OrderDate) As DateID,
 AutoNumber(CustomerID, 'Customer') As CustomerID,
 AutoNumber(EmployeeID, 'Employee') As EmployeeID,
 Freight
FROM
[..\Scripts\OrderHeader.qvd]
(qvd);

Calendar:
Load Distinct
 DateID,
 Date(DateID) As Date,
 Year(DateID) As Year,
 Month(DateID) As Month,
 Day(DateID) As Day,
 Date(MonthStart(DateID), 'YYYY-MM') As YearMonth
Resident
 Order;

Performance Tuning and Scalability

[34]

We can see that there is a difference in the memory profile:

We have all the same symbol table values that we had before with the same memory.
We do have a new data table for Calendar, but it is only quite small because there
are only a small number of values. We have, however, made a dent in the size of the
Order table because we have removed pointers from it. This effect will be increased
as the number of rows increases in the Order table, whereas the number of rows in
the Calendar table will not increase significantly over time.

Of course, because the data is now in two tables, there will be a potential downside
in that joins will need to be made between the tables to answer queries. However,
we should always prefer to have a smaller memory footprint. But how can we tell
if there was a difference in performance?

Testing chart performance for different
load options
As well as information about memory use in each data table and symbol table,
we can recall that the Memory Statistics option will also export information about
charts—both memory use and calculation time. This means that we can create a
chart, especially one with multiple dimensions and expressions, and see how long
the chart takes to calculate for different scenarios.

Let's load the Order Header and Order Line data with the Calendar information
loaded inline (as in the first part of the last example) in the following manner:

Order:
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 Floor(OrderDate) As DateID,
 Year(OrderDate) As Year,
 Month(OrderDate) As Month,

Chapter 1

[35]

 Day(OrderDate) As Day,
 Date(MonthStart(OrderDate), 'YYYY-MM') As YearMonth,
 AutoNumber(CustomerID, 'Customer') As CustomerID,
 AutoNumber(EmployeeID, 'Employee') As EmployeeID,
 Freight
FROM
[..\Scripts\OrderHeader.qvd]
(qvd);

OrderLine:
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 LineNo,
 ProductID,
 Quantity,
 SalesPrice,
 SalesCost,
 LineValue,
 LineCost
FROM
[..\Scripts\OrderLine.qvd]
(qvd);

Now we can add a chart to the document with several dimensions and expressions
like this:

We have used YearMonth and CustomerID as dimensions. This is deliberate because
these two fields will be in separate tables once we move the calendar fields into a
separate table.

Performance Tuning and Scalability

[36]

The expressions that we have used are shown in the following table:

Expression
Label

Expression

Sales $ Sum(LineValue)

Sales $
Color

ColorMix1(Sum(LineValue)/Max(total
Aggr(Sum(LineValue), YearMonth, CustomerID)),
White(), ARGB(255, 0, 128, 255))

Cost $ Sum(LineCost)

Margin $ Sum(LineValue)-Sum(LineCost)

Margin % (Sum(LineValue)-Sum(LineCost))/Sum(LineValue)

Cum. Sales
$

RangeSum(Above(Sum(LineValue),0,RowNo()))

Orders Count(DISTINCT OrderID)

Product
101

Sum(If(ProductID=101,1,0))

Product
102-106

Sum(If(Match(ProductID,102,103,104,105,106), 1, 0))

Turning the cache off
The cache in QlikView is enormously important. Calculations and selections are
cached as you work with a QlikView document. The next time you open a chart
with the same selections, the chart will not be recalculated; you will get the cached
answer instead. This really speeds up QlikView performance. Even within a chart,
you might have multiple expressions using the same calculation (such as dividing
two expressions by each other to obtain a ratio)—the results will make use of caching.

This caching is really useful for a working document, but a pain if we want to gather
statistics on one or more charts. With the cache on, we need to close a document and
the QlikView desktop, reopen the document in a new QlikView instance, and open
the chart. To help us test the chart performance, it can therefore be a good idea to
turn off the cache.

Barry Harmsen, co-author of QlikView 11 for Developers, wrote a good blog entry on
this recently at http://www.qlikfix.com/2014/04/15/power-qlikview-caching.

http://www.qlikfix.com/2014/04/15/power-qlikview-caching

Chapter 1

[37]

As written in the blog, we need to open the About view in QlikView from the Help
menu and locate the QlikView ball:

By right-clicking on the ball, we can open the restricted Settings dialog where we
can set the DisableCache value to 1 and click on the Set button:

You need to close QlikView and reopen it for the change to take effect.

Note that you need to be very careful with this dialog as you could
break things in your QlikView installation. Turning off the cache is
not recommended for normal use of the QlikView desktop as it can
seriously interfere with the performance of QlikView. Turning off
the cache to gather accurate statistics on chart performance is pretty
much the only use case that one might ever come across for turning
off the cache. There is a reason why it is a hidden setting!

Performance Tuning and Scalability

[38]

Examining the chart calculation time for
different scenarios
Now that the cache is turned off, we can open our chart and it will always calculate
at the maximum time. We can then export the memory information as usual and
load it into another copy of QlikView (here, the Class of Sheetobject is selected):

What we could do now is make some selections and save them as bookmarks.
By closing the QlikView desktop client and then reopening it, and then opening
the document and running through the bookmarks, we can export the memory
file and create a calculation for Avg Calc Time. Because there is no cache involved,
this should be a valid representation.

Now, we can comment out the inline calendar and create the Calendar table
(as we did in a previous exercise):

Order:
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 Floor(OrderDate) As DateID,
// Year(OrderDate) As Year,
// Month(OrderDate) As Month,
// Day(OrderDate) As Day,
// Date(MonthStart(OrderDate), 'YYYY-MM') As YearMonth,
 AutoNumber(CustomerID, 'Customer') As CustomerID,
 AutoNumber(EmployeeID, 'Employee') As EmployeeID,
 Freight
FROM
[..\Scripts\OrderHeader.qvd]
(qvd);

OrderLine:
//Left Join (Order)
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 LineNo,
 ProductID,
 Quantity,
 SalesPrice,
 SalesCost,
 LineValue,
 LineCost

Chapter 1

[39]

FROM
[..\Scripts\OrderLine.qvd]
(qvd);

//exit Script;

Calendar:
Load Distinct
 DateID,
 Year(DateID) As Year,
 Month(DateID) As Month,
 Day(DateID) As Day,
 Date(MonthStart(DateID), 'YYYY-MM') As YearMonth
Resident
 Order;

For the dataset size that we are using, we should see no difference in calculation time
between the two data structures. As previously established, the second option has a
smaller in-memory data size, so that would always be the preferred option.

Optimizing performance by creating counter
fields
For many years, it has been a well-established fact among QlikView consultants
that a Count() function with a Distinct clause is a very expensive calculation.
Over the years, I have heard that Count can be up to 1000 times more expensive
than Sum. Actually, since about Version 9 of QlikView, this is no longer true, and
the Count function is a lot more efficient.

See Henric Cronström's blog entry at http://community.
qlik.com/blogs/qlikviewdesignblog/2013/10/22/
a-myth-about-countdistinct for more information.

Count is still a more expensive operation, and the recommended solution is to create
a counter field in the table that you wish to count, which has a value of 1. You can
then sum this counter field to get the count of rows. This field can also be useful in
advanced expressions like Set Analysis.

Using the same dataset as in the previous example, if we create a chart using similar
dimensions (YearMonth and CustomerID) and the same expression for Order # as
done previously:

Count(Distinct OrderID)

http://community.qlik.com/blogs/qlikviewdesignblog/2013/10/22/a-myth-about-countdistinct
http://community.qlik.com/blogs/qlikviewdesignblog/2013/10/22/a-myth-about-countdistinct
http://community.qlik.com/blogs/qlikviewdesignblog/2013/10/22/a-myth-about-countdistinct

Performance Tuning and Scalability

[40]

This gives us a chart like the following:

After running through the same bookmarks that we created earlier, we get a set of
results like the following:

So, now we modify the Order table load as follows:

Order:
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 1 As OrderCounter,
 Floor(OrderDate) As DateID,
 AutoNumber(CustomerID, 'Customer') As CustomerID,
 AutoNumber(EmployeeID, 'Employee') As EmployeeID,
 Freight
FROM
[..\Scripts\OrderHeader.qvd]
(qvd);

Chapter 1

[41]

Once we reload, we can modify the expression for Order # to the following:

Sum(OrderCounter)

We close down the document, reopen it, and run through the bookmarks again.
This is an example result:

And yes, we do see that there is an improvement in calculation time—it appears to
be a factor of about twice as fast.

The amount of additional memory needed for this field is actually minimal. In the way
we have loaded it previously, the OrderCounter field will add only a small amount
in the symbol table and will only increase the size of the data table by a very small
amount—it may, in fact, appear not to increase it at all! The only increase is in the
core system tables, and this is minor.

Recalling that data tables are bit-stuffed but stored as bytes, adding
a one-bit value like this to the data table may not actually increase
the number of bytes needed to store the value. At worst, only one
additional byte will be needed.

In fact, we can reduce this minor change even further by making the following change:

 ...
 Floor(1) As OrderCounter,
 ...

This forces the single value to be treated as a sequential integer (a sequence of one)
and the value therefore isn't stored in the symbol table.

Performance Tuning and Scalability

[42]

Optimizing performance by combining fact
tables?
If we load all of our tables, the data structure may look something like the following:

In this format, we have two fact tables—Order and OrderLine. For the small dataset
that we have, we won't see any issues here. As the dataset gets larger, it is suggested
that it is better to have fewer tables and fewer joins between tables. In this case,
between Product and Employee, there are three joins. The best practice is to have
only one fact table containing all our key fields and associated facts (measures).

In this model, most of the facts are in the OrderLine table, but there are two facts in
the Order table—OrderCounter and Freight. We need to think about what we do
with them. There are two options:

1. Move the EmployeeID, DateID, and CustomerID fields from the Order table
into the OrderLine table. Create a script based on an agreed business rule (for
example, ratio of line Quantity) to apportion the Freight value across all of
the line values. The OrderCounter field is more difficult to deal with, but we
could take the option of using Count(Distinct OrderID) (knowing that it is
less efficient) in the front end and disposing of the OrderCounter field.
This method is more in line with traditional data warehousing methods.

2. Move the EmployeeID, DateID, and CustomerID fields from the Order
table into the OrderLine table. Leave the Order table as is, as an Order
dimension table.
This is more of a QlikView way of doing things. It works very well too.

Chapter 1

[43]

Although we might be great fans of dimensional modeling methods (see Chapter 2,
QlikView Data Modeling), we should also be a big fan of pragmatism and using
what works.

Let's see what happens if we go for option 2. The following is the addition to the
script to move the key fields:

// Move DateID, CustomerID and EmployeeID to OrderLine
Join (OrderLine)
Load
 OrderID,
 DateID,
 CustomerID,
 EmployeeID
Resident
 Order;

Drop Fields DateID, CustomerID, EmployeeID From Order;

// Rename the OrderLine table
RENAME Table OrderLine to Fact;

So, how has that worked? The table structure now looks like the following:

Performance Tuning and Scalability

[44]

Our expectation, as we have widened the biggest data table (OrderLine) and only
narrowed a smaller table (Order), is that the total memory for the document will be
increased. This is confirmed by taking memory snapshots before and after the change:

But have we improved the overall performance of the document?

To test this, we can create a new version of our original chart, except now using
Customer instead of CustomerID and adding Product. This gives us fields
(YearMonth, Customer, and Product) from across the dimension tables. If we use
this new straight table to test the before and after state, the following is how the
results might look:

Interestingly, the average calculation has reduced slightly. This is not unexpected as
we have reduced the number of joins needed across data tables.

Optimizing your numbers
QlikView has a great feature in that it can sometimes default to storing numbers
as Dual values—the number along with text representing the default presentation
of that number. This text is derived either by applying the default formats during
load, or by the developer applying formats using functions such as Num(), Date(),
Money(), or TimeStamp(). If you do apply the format functions with a format string
(as the second parameter to Num, Date, and so on), the number will be stored as a
Dual. If you use Num without a format string, the number will usually be stored
without the text.

Chapter 1

[45]

Thinking about it, numbers that represent facts (measures) in our fact tables will
rarely need to be displayed with their default formats. They are almost always only
ever going to be displayed in an aggregation in a chart and that aggregated value
will have its own format. The text part is therefore superfluous and can be removed
if it is there.

Let's modify our script in the following manner:

Order:
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 Floor(1) As OrderCounter,
 Floor(OrderDate) As DateID,
 AutoNumber(CustomerID, 'Customer') As CustomerID,
 AutoNumber(EmployeeID, 'Employee') As EmployeeID,
 Num(Freight) As Freight
FROM
[..\Scripts\OrderHeader.qvd]
(qvd);

OrderLine:
LOAD AutoNumber(OrderID, 'Order') As OrderID,
 LineNo,
 ProductID,
 Num(Quantity) As Quantity,
 Num(SalesPrice) As SalesPrice,
 Num(SalesCost) As SalesCost,
 Num(LineValue) As LineValue,
 Num(LineCost) As LineCost
FROM
[..\Scripts\OrderLine.qvd]
(qvd);

The change in memory looks like the following:

Performance Tuning and Scalability

[46]

We can see that there is a significant difference in the Freight field. The smaller
SalesPrice field has also been reduced. However, the other numeric fields are
not changed.

Some numbers have additional format strings and take up a lot of space, some don't.
Looking at the numbers, we can see that the Freight value with the format string is
taking up an average of over 18 bytes per value. When Num is applied, only 8 bytes
are taken per value. Let's add an additional expression to the chart:

Expression label Expression
Avg. Bytes Sum(Bytes)/Sum(Count)

Now we have a quick indicator to see whether numeric values are storing
unneeded text.

Optimizing chart calculation times
Once we have optimized our data model, we can turn our focus onto chart
performance. There are a few different things that we can do to make sure that
our expressions are optimal, and we can use the memory file extract to test them.

Some of the expressions will actually involve revisiting the data model. If we do,
we will need to weigh up the cost of that performance with changes to memory,
and so on.

It will be useful to begin with an explanation of how the QlikView calculation
engine works.

The QlikView calculation engine
QlikView is very clever in how it does its calculations. As well as the data storage,
as discussed earlier in this chapter, it also stores the binary state of every field and
of every data table dependent on user selection—essentially, depending on the
green/white/grey state of each field, it is either included or excluded. This area of
storage is called the state space and is updated by the QlikView logical inference
engine every time a selection is made. There is one bit in the state space for every
value in the symbol table or row in the data table—as such, the state space is much
smaller than the data itself and hence much faster to query.

Chapter 1

[47]

There are three steps to a chart being calculated:

1. The user makes a selection, causing the logical inference engine to reset
and recalculate the state space. This should be a multithreaded operation.

2. On one thread per object, the state space is queried to gather together all
of the combinations of dimensions and values necessary to perform the
calculation. The state space is being queried, so this is a relatively fast
operation, but could be a potential bottleneck if there are many visible
objects on the screen.

3. On multiple threads per object, the expression is calculated. This is where
we see the cores in the task manager all go to 100 percent at the same time.
Having 100 percent CPU is expected and desired because QlikView will
"burst" calculations across all available processor cores, which makes this
a very fast process, relative to the size and complexity of the calculation.
We call it a burst because, except for the most complex of calculations,
the 100 percent CPU should only be for a short time.

Of course, the very intelligent cache comes into play as well and everything that is
calculated is stored for potential subsequent use. If the same set of selections are met
(such as hitting the Back button), then the calculation is retrieved from the cache and
will be almost instantaneous.

Now that we know more about how QlikView performs its calculations, we can look
at a few ways that we can optimize things.

Creating flags for well-known conditions
We cannot anticipate every possible selection or query that a user might make, but
there are often some quite well-known conditions that will generally be true most of
the time and may be commonly used in calculations. In this example, we will look at
Year-to-Date and Last Year-to-Date—commonly used on dashboards.

The following is an example of a calculation that might be used in a gauge:

Sum(If(YearToDate(Date), LineValue, 0))
/Sum(If(YearToDate(Date,-1), LineValue, 0))
-1

Performance Tuning and Scalability

[48]

This uses the YearToDate() function to check whether the date is in the current
year to date or in the year to date period for last year (using the -1 for the offset
parameter). This expression is a sum of an if statement, which is generally not
recommended. Also, these are quite binary—a date is either in the year to date
or not—so are ideal candidates for the creation of flags. We can do this in the
Calendar table in the following script:

Calendar:
Load Distinct
 DateID,
 -YearToDate(DateID) As YTD_Flag,
 -YearToDate(DateID,-1) As LYTD_Flag,
 Date(DateID) As Date,
 Year(DateID) As Year,
 Month(DateID) As Month,
 Day(DateID) As Day,
 Date(MonthStart(DateID), 'YYYY-MM') As YearMonth
Resident
 Order;

Note the - sign before the function. This is because YearToDate
is a Boolean function that returns either true or false, which in
QlikView is represented by -1 and 0. If the value is in the year
to date, then the function will return -1, so I add the - to change
that to 1. A - sign before 0 will make no difference.

In a particular test dataset, we might see an increase from 8,684 bytes to 13,026—not
an unexpected increase and not significant because the Calendar table is relatively
small. We are creating these flags to improve performance in the frontend and need
to accept a small change in the data size.

The significant change comes when we change the expression in the chart to
the following:

Sum(LineValue*YTD_Flag)/Sum(LineValue*LYTD_Flag)-1

In a sample dataset, we might see that the calculation reduces from, say, 46 to, say,
16—a 65 percent reduction. This calculation could also be written using Set Analysis
as follows:

Sum({<YTD_Flag={1}>} LineValue)/Sum({<LYTD_Flag={1}>} LineValue)-1

However, this might only get a calc time of 31—only a 32.6 percent reduction.
Very interesting!

Chapter 1

[49]

If we think about it, the simple calculation of LineValue*YTD_Flag is going to do
a multithreaded calculation using values that are derived from the small and fast
in-memory state space. Both If and Set Analysis are going to add additional load
to the calculation of the set of values that are going to be used in the calculation.

In this case, the flag field is in a dimension table, Calendar, and the value field is
in the fact table. It is, of course, possible to generate the flag field in the fact table
instead. In this case, the calculation is likely to run even faster, especially on very
large datasets. This is because there is no join of data tables required. However, the
thing to bear in mind is that the additional pointer indexes in the Calendar table will
require relatively little space whereas the additional width of the fact table, because
of the large numbers of rows, will be something to consider. However, saying that,
the pointers to the flag values are very small, so you do need a really long fact table
for it to make a big difference. In some cases, the additional bit necessary to store the
pointer in the bit-stuffed table will not make any difference at all, and in other cases,
it may add just one byte.

Set Analysis can be very powerful, but it is worth considering that it often has to
go, depending on the formula, outside the current state space, and that will cause
additional calculation to take place that may be achieved in a simpler manner by
creating a flag field in the script and using it in this way. Even if you have to use
Set Analysis, the best performing comparisons are going to be using numeric
comparisons, so creating a numeric flag instead of a text value will improve the
set calculation performance. For example, consider the following expression:

Sum({<YTD_Flag={1}>} LineValue)

This will execute much faster than the following expression:

Sum({<YTD_Flag={'Yes'}>} LineValue)

So, when should we use Set Analysis instead of multiplying by flags? Barry
Harmsen has done some testing that indicates that if the dimension table is much
larger relative to the fact table, then using Set Analysis is faster than the flag
fields. The reasoning is that the multiply method will process all records (even those
containing 0), so in larger tables, it has more to process. The Set Analysis method
will first reduce the scope, and apply the calculation to that subset.

Of course, if we have to introduce more advanced logic, that might include AND/OR/
NOT operations, then Set Analysis is the way to go—but try to use numeric flags.

Performance Tuning and Scalability

[50]

Sorting for well-known conditions
Any time that you need to sort a chart or listbox, that sort needs to be calculated. Of
course, a numeric sort will always be the fastest. An alphabetic sort is a lot slower, just
by its nature. One of the very slowest sorts is where we want to sort by expression.

For example, let's imagine that we wish to sort our Country list by a fixed order,
defined by the business. We could use a sort expression like this:

Match(Country,'USA','Canada','Germany','United Kingdom','China','India
','Russia','France','Ireland')

The problem is that this is a text comparison that will be continually evaluated. What
we can do instead is to load a temporary sort table in the script. We load this towards
the beginning of the script because it needs to be the initial load of the symbol table;
something like the following:

Country_Sort:
Load * Inline [
Country
USA
Canada
Germany
United Kingdom
China
India
Russia
France
Ireland
];

Then, as we won't need this table in our data, we should remember to drop it at the
end of the script—after the main data has been loaded:

Drop Table Country_Sort;

Now, when we use this field anywhere, we can turn off all of the sort options and
use the last one—Load Order. This doesn't need to be evaluated so will always
calculate quickly:

Chapter 1

[51]

Using Direct Discovery
Traditionally, QlikView has been a totally in-memory tool. If you want to analyze
any information, you need to get all of the data into memory. This has caused
problems for many enterprise organizations because of the sheer size of data that
they wanted to analyze. You can get quite a lot of data into QlikView—billions of
rows are not uncommon on very large servers, but there is a limit. Especially in the
last few years where businesses have started to take note of the buzz around Big
Data, many believed that QlikView could not play in this area.

Direct Discovery was introduced with QlikView Version 11.20. In Version 11.20 SR5,
it was updated with a new, more sensible syntax. This syntax is also available in Qlik
Sense. What Direct Discovery does is allow a QlikView model to connect directly to
a data source without having to load all of the data into memory. Instead, we load
only dimension values and, when necessary, QlikView generates a query to retrieve
the required results from the database.

Of course, this does have the potential to reduce some of the things that make
QlikView very popular—the sub-second response to selections, for example. Every
time that a user makes a selection, QlikView generates a query to pass through to
the database connection. The faster the data connection, the faster the response, so a
performative data warehouse is a boon for Direct Discovery. But speed is not always
everything—with Direct Discovery, we can connect to any valid connection that we
might normally connect to with the QlikView script; this includes ODBC connectors
to Big Data sources such as Cloudera or Google.

Performance Tuning and Scalability

[52]

Here we will get an introduction to using Direct Discovery, but
we should read the more detailed technical details published by
the Qlik Community, for example, the SR5 technical addendum
at http://community.qlik.com/docs/DOC-3710.

Direct Discovery restrictions
There are a few restrictions of Direct Discovery that will probably be addressed with
subsequent service releases:

• Only one direct table is supported: This restriction has been lifted in
QlikView 11.20 SR7 and Qlik Sense 1.0. Prior to those versions, you could
only have one direct query in your data model. All other tables in the data
model must be in-memory.

• Set Analysis and complex expressions not supported: Because the query
is generated on the fly, it just can't work with the likes of a Set Analysis
query. Essentially, only calculations that can be performed on the source
database—Sum, Count, Avg, Min, Max—will work via Direct Discovery.

• Only SQL compliant data sources: Direct Discovery will only work against
connections that support SQL, such as ODBC, OLEDB, and custom connectors
such as SAP and JDBC. Note that there are some system variables that may
need to be set for some connectors, such as SAP or Google Big Query.

• Direct fields are not supported in global search: Global search can only
operate against in-memory data.

• Security restrictions: Prior to QlikView 11.20 SR7 and Qlik Sense 1.0,
Section Access reduction can work on the in-memory data, but will not
necessarily work against the Direct table. Similarly, Loop and Reduce
in Publisher won't work correctly.

• Synthetic keys not supported: You can only have native key associations.
AutoNumber will obviously not be supported on the direct table.

• Calculated dimensions not supported: You can only create calculated
dimensions against in-memory data.

• Naming the Direct table: You can't create a table alias. The table will always
be called DirectTable.

It is also worth knowing that QlikView will use its cache to store the results of
queries. So if you hit the Back button, the query won't be rerun against the source
database. However, this may have consequences when the underlying data is
updated more rapidly. There is a variable—DirectCacheSeconds—that can be
set to limit the time that data is cached. This defaults to 3600 seconds.

http://community.qlik.com/docs/DOC-3710

Chapter 1

[53]

Direct Discovery syntax
The most important statement is the opening one:

DIRECT QUERY

This tells QlikView to expect some further query components. It is similar to the SQL
statement that tells QlikView to execute the subsequent query and get the results into
the memory. The DIRECT QUERY is followed by:

DIMENSION Dim_1, Dim_2, ..., Dim_n

We must have at least one dimension field. These fields will have their values loaded
into a symbol table and state space. This means that they can be used as normal in
listboxes, tables, charts, and so on. Typically, the DIMENSION list will be followed by:

MEASURE Val_1, Val_2, ..., Val_n

These fields are not loaded into the data model. They can be used, however, in
expressions. You can also have additional fields that are not going to be used in
expressions or dimensions:

DETAIL Note_1, Note_2, ..., Note_n

These DETAIL fields can only be used in table boxes to give additional context to
other values. This is useful for text note fields.

Finally, there may be fields that you want to include in the generated SQL query but
are not interested in using in the QlikView model:

DETACH other_1, other_2, ..., other_n

Finally, you can also add a limitation to your query using a standard WHERE clause:

WHERE x=y

The statement will, of course, be terminated by a semicolon.

We can also pass valid SQL syntax statements to calculate dimensions:

NATIVE('Valid SQL ''syntax'' in quotes') As Field_x

If your SQL syntax also has single quotes, then you will need to double-up on the
single quotes to have it interpreted correctly.

Performance Tuning and Scalability

[54]

Looking at an example Direct Query
The following is an example of a Direct Query to a SQL server database:

DIRECT QUERY
dimension
 OrderID,
 FLOOR(OrderDate) As DateID,
 CustomerID,
 EmployeeID,
 ProductID
measure
 Quantity,
 SalesPrice,
 LineValue,
 LineCost
detail
 Freight,
 LineNo
FROM QWT.dbo."Order_Fact";

This results in a table view like the following:

Chapter 1

[55]

You will note that the list of fields in the table view only contains the dimension
values. The measure values are not shown.

You can now go ahead and build charts mostly as normal (without, unfortunately,
Set Analysis!), but note that you will see a lot more of the hourglass:

The X in the bottom corner of the chart can be used to cancel the execution of the
direct query.

Testing scalability with JMeter
JMeter is a tool from Apache that can be used to automate web-based interactions
for the purpose of testing scalability. Basically, we can use this tool to automatically
connect to a QlikView application, make different selections, look at different charts,
drill up and down, and repeat to test how well the application performs.

JMeter first started being used for testing QlikView about 3 years ago. At the time,
while it looked like a great tool, the amount of work necessary to set it up was very
off-putting.

Since then, however, the guys in the Qlik scalability center have created a set of tools
that automate the configuration of JMeter, and this makes things a lot easier for us.
In fact, almost anyone can set up a test—it is that easy!

Performance Tuning and Scalability

[56]

Obtaining the scalability tools
The tools needed to test scalability are made available via the Qlik community.
You will need to connect to the Scalability group (http://community.qlik.com/
groups/qlikview-scalability).

Search in this group for "tools" and you should find the latest version. There are
some documents that you will need to read through, specifically:

• Prerequisites.pdf

• QVScalabilityTools.pdf

Installing JMeter
JMeter can be obtained from the Apache website:

https://jmeter.apache.org/

However, the prerequisites documentation recommends a slightly older version
of JMeter:

http://archive.apache.org/dist/jakarta/jmeter/binaries/jakarta-jmeter-
2.4.zip

JMeter is a Java application, so it is also a good idea to make sure that you have the
latest version of the Java runtime installed—64-bit for a 64-bit system:

http://java.com/en/download/manual.jsp

It is recommended not to unzip JMeter directly to C:\ or Program Files or other
folders that may have security that reduces your access. Extract them to a folder that
you have full access to. Do note the instructions in the Prerequisites.pdf file on
setting heap memory sizing. To confirm that all is in order, you can try running the
jmeter.bat file to open JMeter—if it works, then it means that your Java and other
dependencies should be installed correctly.

Microsoft .Net 4.0 should also be installed on the machine. This can be downloaded
from Microsoft. However, it should already be installed if you have QlikView Server
components on the machine.

http://community.qlik.com/groups/qlikview-scalability
http://community.qlik.com/groups/qlikview-scalability
https://jmeter.apache.org/
http://archive.apache.org/dist/jakarta/jmeter/binaries/jakarta-jmeter-2.4.zip
http://archive.apache.org/dist/jakarta/jmeter/binaries/jakarta-jmeter-2.4.zip
http://java.com/en/download/manual.jsp

Chapter 1

[57]

Installing the scalability tools
Depending on your system, you may find that the ZIP file that you download has
its status set to Blocked. In this case, you need to right-click on the file, open the
properties, and click on the Unblock button:

If you don't, you may find that the file appears to unzip successfully, but the
executables will not run. You might see an error like this in the Windows
Application Event Log:

After you have made sure that the ZIP file is unblocked, you can extract the scalability
tools to a folder on your system. Follow the instructions in the Prerequisites.pdf
file to change the configuration.

Performance Tuning and Scalability

[58]

Hitting Start + R and then typing perfmon will allow you to run
the Performance Monitor tool to import the profile as set out in
the documentation.

About the scalability tools
The toolset consists of the following separate parts:

• Script generator: Used to generate the JMeter script
• Script executor: Executes the generated script
• Analyzer: A QlikView document that reads various logs to give you results

Running an example execution
Running a session is actually quite straightforward, and a lot easier than having to
craft the script by hand.

There are a couple of steps that we need to do before we can generate a test script:

1. We need to open the target application in QlikView desktop and extract the
layout information:

This exports all of the information about the document, including all of the
objects, into XML files that can be imported into the script generator. This is
how the script generator finds out about sheets and objects that it can use.

Chapter 1

[59]

2. Copy the AjaxZfc URL for the application. We need to give this information
to the script builder so that it knows how to connect to the application:

3. Clear the existing log files from the QVS. These files will be in the
ProgramData\QlikTech\QlikViewServer folder. Stop the QlikView
Server Service and then archive or delete the Performance*.log, Audit*.
log, Events*.log, and Sessions*.log files. When you restart the service,
new ones will start to be created:

Note that you should be careful not to delete the PGO
files in the same folders—these are copies of the server's
license information files.

4. Start the Performance Monitor using the template that you configured
earlier. Double-check that it starts to create content in the folder (for
example, C:\PerfLogs\Admin\New Data Collector Set\QlikView
Performance Monitor).

Performance Tuning and Scalability

[60]

Once those steps have been completed, we can go ahead and create a script:

1. Execute the script generator by running
QlikViewTestScriptGeneratorGui.exe from the ScriptGenerator folder.

2. There are some properties that we need to set on this page:

Property Value
QlikView version 11.
Document URL Paste the URL that you recorded earlier.
Security settings Choose the right authentication mechanism for your

QlikView server (more details discussed later).
Concurrent users How many users you want to run concurrently.
Iterations per user How many times each user will run through the

scenario. If you set this to Infinite, you need to
specify a Duration below.

Ramp up What time should there be before all users are logged
in. 1 means that all users start together.

Chapter 1

[61]

Property Value
Duration How long the test should be run for. If you set this to

Infinite then you must set a number of Iterations per
user above it.

If you use NTLM, then you cannot use more than one concurrent
user. This is because the NTLM option will execute under the
profile of the user running the application and each concurrent
user will therefore attempt to log in with the same credentials.
QVS does not allow this so each concurrent user will actually
end up killing each other's sessions.
If you want to simulate more than one user, then you can turn on
Header authentication in the QVWS configuration and make use
of the userpw.txt file to add a list of users. The QVS will need
to be in DMS mode to support this. Also bear in mind that you
will need to have an appropriate number of licenses available to
support the number of users that you want to test with.

3. Save the document in the ScriptGenerator\SourceXMLs folder. Note that
you should not use spaces or non-alphanumeric characters in the XML
filename. It is a good idea to make the filename descriptive as you might
use it again and again.

4. Click the Scenario tab. Click the Browse button and navigate to the folder
where you save the document layout information earlier. Save the template
(it's always a good idea to save continually as you go along). Change the
Timer Delay Min to 30 and the Max to 120:

Performance Tuning and Scalability

[62]

This setting specifies the range of delay between different actions. We should
always allow an appropriate minimum to make sure that the application can
update correctly after an action. The random variation between the minimum
and maximum settings gives a simulation of user thinking time.

5. By default, there are three default actions—open AccessPoint, open the
document, and then a timer delay. Click on the green + button on the
left-hand side of the bottom timer delay action to add a new action below
it. Two new actions will be added—an unspecified Choose Action one and
a timer delay containing the settings that we specified above. The Auto add
timers checkbox means that a timer delay will be automatically added every
time we add a new action.

6. Build up a scenario by adding appropriate actions:

Remember to keep saving as you go along.

7. Click on the Execution tab. Click on Yes in answer to the Add to execution
prompt. Expand the Settings option and click on Browse to select the
JMeter path:

Chapter 1

[63]

When you click on OK, you will be prompted on whether to save this setting
permanently or not. You can click on OK in response to this message:

1. Right-click on the script name and select Open in JMeter:

2. Click on OK on OutputPopupForm. When JMeter opens, note the entries
that have been created in the test plan by the script generator.

Performance Tuning and Scalability

[64]

3. Close JMeter. Back in the script generator, right-click on the script again and
select Run from the menu. The Summary tab appears, indicating that the
script is executing:

Once you have executed a test, you will want to analyze the results. The scalability
tools come with a couple of QVW files to help you out here. There are a couple of
steps that you need to go through to gather all the files together first:

1. In the QVScriptGenTool_0_7 64Bit\Analyzer folder, there is a ZIP file
called FolderTemplate.zip. Extract the FolderTemplate folder out of the
ZIP file and rename it to match the name of your analysis task—for example,
SalesAnalysis. Within this folder, there are four subfolders that you need
to populate with data:

Subfolder Data source
EventLogs These are the QVS event logs—Events_servername_*.log

JMeterLogs These are the JMeter execution logs that should be
in QVScriptGenTool_0_7 64Bit\Analyzer\
JMeterExecutions

ServerLogs These are the CSV files created—SERVERNAME_Processes*.csv

SessionLogs These are the QVS session logs—Sessions_servername_*.log

2. Open the QVD Generator.qvw file using QlikView Desktop. Set the correct
name for the subfolder that you have just created:

3. Reload the document.
4. Once the document has reloaded, manually edit the name of the server using

the input fields in each row of the table:

Chapter 1

[65]

5. Once you have entered the data, click on the Create Meta-CSV button.
You can then close the QVD Generator.

6. Open the SC_Results – DemoTest.qvw file and save it as a new file with
an appropriate name—for example, SC_Results – SalesAnalysis.qvw.
Change the Folder Name variable as before and reload.

Now you can start to analyze your server's performance during the tests:

Because you can run multiple iterations of the test, with different parameters, you
can use the tool to run comparisons to see changes. These can also be scheduled from
the command line to run on a regular basis.

Performance Tuning and Scalability

[66]

One thing that these JMeter scripts can be used for is a process called
"warming the cache". If you have a very large QlikView document,
it can take a long time to load into memory and create the user cache.
For the first users to connect to the document in the morning, they may
have a very poor experience while waiting for the document to open—
they may even time out. Subsequent users will get the benefit of these
user actions. However, if you have a scheduled task to execute a JMeter
task, you can take the pain away from those first users because the
cache will already be established for them when they get to work.

Summary
There has been a lot of information in this chapter, and I hope that you have been
able to follow it well.

We started by reviewing some basic performance improvement techniques that you
should already have been aware of, but you might not think about. Knowing these
techniques is important and is the beginning of your path to mastering how to create
performative QlikView applications.

We then looked at methods of generating test data that can be used to help you hone
your skills.

Understanding how QlikView stores its data is a real requisite for any developer
who wants to achieve mastery of this subject. Learning how to export memory
statistics is a great step forward to learn how to achieve great things with
performance and scalability.

We looked at different strategies for reducing the memory profile of a QlikView
application and improving the performance of charts.

By this stage, you should have a great start in understanding how to create really
performative applications.

When it gets to the stage where there is just too much data for QlikView to manage
in-memory, we have seen that we can use a hybrid approach where some of the
data is in-memory and some of the data is still in a database, and we can query
that data on the fly using Direct Discovery.

Finally, we looked at how we can use JMeter to test our applications with some
real-world scenarios using multiple users and repetitions to really hammer an
application and confirm that it will work on the hardware that is in place.

Chapter 1

[67]

Having worked through this chapter, you should have a great understanding of how
to create scalable applications that perform really well for your users. You are starting
to become a QlikView master!

In the next chapter, we will learn about best practices in modeling data and how that
applies to QlikView.

QlikView Data Modeling
"It is a capital mistake to theorize before one has data. Insensibly one begins to
twist facts to suit theories, instead of theories to suit facts."

 — Sherlock Holmes (Arthur Conan Doyle), A Scandal in Bohemia

In data warehousing and business intelligence, there are many approaches to data
modeling. We hear of personalities such as Bill Inmon and Ralph Kimball. We talk of
normalization and dimensional modeling. But we also might have heard about how
QlikView can cut across all of this—we don't need to worry about data warehousing;
we just load in all the data from source systems and start clicking. Right?

Well, that might be right if you want to load just a very quick application directly
from the data source and aren't too worried about performance or maintainability.
However, the dynamic nature of the QlikView script does not mean that we should
throw out all of the best practices in data warehouse design that have been established
over the course of many years.

In this chapter, we are going to look at the best practices around QlikView data
modeling. As revealed in the previous chapter, this does not always mean the best
performing data model. But there are many reasons why we should use these best
practices, and these will become clear over the course of this chapter and the next.

The following are the topics we'll be covering in this chapter:

• Reviewing basic data modeling
• Dimensional data modeling
• Handling slowly changing dimensions
• Dealing with multiple fact tables in one model

QlikView Data Modeling

[70]

Reviewing basic data modeling
If you have attended QlikView training courses and done some work with QlikView
modeling, there are a few things that you will know about, but I will review them
just to be sure that we are all on the same page.

Associating data
QlikView uses an associative model to connect data rather than a join model.
A join model is the traditional approach to data queries. In the join model, you craft
a SQL query across multiple tables in the database, telling the database management
system (DBMS) how those tables should be joined—whether left, inner, outer, and
so on. The DBMS might have a system in place to optimize the performance of those
queries. Each query tends to be run in isolation, returning a result set that can be
either further explored—Excel pivot tables are a common use case here—or used
to build a final report. Queries might have parameters to enable different reports
to be executed, but each execution is still in isolation. In fact, it is the approach that
underlies many implementations of a "semantic layer" that many of the "stack" BI
vendors implement in their products. Users are isolated from having to build the
queries—they are built and executed by the BI system—but each query is still an
isolated event.

In the associative model, all the fields in the data model have a logical association
with every other field in the data model. This association means that when a user
makes a selection, the inference engine can quickly resolve which values are still
valid—possible values—and which values are excluded. The user can continue
to make selections, clear selections, and make new selections, and the engine will
continue to present the correct results from the logical inference of those selections.
The user's queries tend to be more natural and it allows them to answer questions
as they occur.

It is important to realize that just putting a traditional join model database into
memory, as many vendors have started to do, will not deliver the same interactive
associative experience to users. The user will probably get faster running queries,
but they will still be isolated queries.

Saying that, however, just because QlikView has a great associative model technology,
you still need to build the right data model to be able to give users the answers that
they don't know and are looking for, even before they have asked for them!

Chapter 2

[71]

Automatically associating tables
We should know that QlikView will automatically associate two data tables based
on both tables containing one or more fields that match exactly in both name and case.
QlikView fields and table names are always case sensitive—Field1 does not match to
FIELD1 or field1.

Suppose that we run a very simple load statement such as the following:

Customer:
Load * Inline [
CustomerID, Customer
1, Customer A
2, Customer B
];

Sales:
Load * Inline [
Date, CustomerID, Value
2014-05-12, 1, 100
2014-05-12, 2, 200
2014-05-12, 1, 100
];

This will result in an association that looks like the following:

If you read the previous chapter, you will know that this will generate two data
tables containing pointer indexes that point to several symbol tables for the data
containing the unique values.

www.allitebooks.com

http://www.allitebooks.org

QlikView Data Modeling

[72]

Understanding synthetic keys
A synthetic key is QlikView's method of associating two tables that have more than
one field in common. Before we discuss the merits of them, let's first understand
exactly what is happening with them.

For example, consider the following simple piece of script:

Budget:
Load * Inline [
CustomerID, Year, BudgetValue
1, 2013, 10000
2, 2013, 15000
1, 2014, 12000
2, 2014, 17500
];

Sales:
Load * Inline [
Date, Year, CustomerID, Value
2013-01-12, 2013, 1, 100
2013-02-25, 2013, 2, 200
2013-02-28, 2013, 1, 100
2013-04-04, 2013, 1, 100
2013-06-21, 2013, 2, 200
2013-08-02, 2013, 1, 100
2014-05-12, 2014, 1, 100
2014-05-12, 2014, 2, 200
2014-05-12, 2014, 1, 100
];

This will produce an Internal Table View like the following:

Chapter 2

[73]

It is worth noting that QlikView can also represent this as a Source Table View,
showing the association in a more logical, database way, like the following:

To be honest, I never use this view, but I can understand
why some people, especially those transitioning from a SQL
background, might feel comfortable with it. I would urge you
to get more comfortable with Internal Table View because it
is more reflective of what is happening internally in QlikView.

We can see from Internal Table View that QlikView has moved the common fields
into a new table, $Syn 1 Table, that contains all the valid combinations of the values.
The values have been replaced in the original tables with a derived composite key,
or surrogate key, that is associated with $Syn 1 Table.

To me, this is perfectly sensible data modeling. When we look at our options later
on in the chapter, we will begin to recognize this approach as Link Table modeling.
There are, however, some scare stories about using synthetic keys. In fact, in the
documentation, it is recommended that you remove them. The following is quoted
from QlikView Reference Manual:

When the number of composite keys increases, depending on data amounts, table
structure and other factors, QlikView may or may not handle them gracefully.
QlikView may end up using excessive amounts of time and/or memory.
Unfortunately, the actual limitations are virtually impossible to predict,
which leaves only trial and error as a practical method to determine them.

An overall analysis of the intended table structure by the application designer.
is recommended, including the following:

QlikView Data Modeling

[74]

Forming your own non-composite keys, typically using string concatenation inside
an AutoNumber script function.

Making sure only the necessary fields connect. If, for example, a date is used as a
key, make sure not to load e.g. year, month or day_of_month from more than one
internal table.

The important thing to look at here is that it says, "When the number of composite
keys increases…"—this is important because you should understand that a synthetic
key is not necessarily a bad thing in itself. However, having too many of them is,
to me, a sign of a poor data modeling effort. I would not, for example, like to see
a table viewer looking like the following:

There have been some interesting discussions about this subject in the Qlik
community. John Witherspoon, a long time contributor to the community,
wrote a good piece entitled Should we stop worrying and love the Synthetic Key
(http://community.qlik.com/thread/10279).

Of course, Henric Cronström has a good opinion on this subject as well, and
has relayed it in Qlik Design Blog at http://community.qlik.com/blogs/
qlikviewdesignblog/2013/04/16/synthetic-keys.

http://community.qlik.com/thread/10279
http://community.qlik.com/blogs/qlikviewdesignblog/2013/04/16/synthetic-keys
http://community.qlik.com/blogs/qlikviewdesignblog/2013/04/16/synthetic-keys

Chapter 2

[75]

My opinion is similar to Henric's. I like to see any synthetic keys resolved in the data
model. I find them a little untidy and a little bit lazy. However, there is no reason to
spend many hours resolving them if you have better things to do and there are no
issues in your document.

Creating composite keys
One of the methods used to resolve synthetic keys is to create your own composite
key. A composite key is a field that is composed of several other field values. There
are a number of ways of doing this, which we will examine in the next sections.

Using string concatenation
The very simplest way of creating a composite key is to simply concatenate all the
values together using the & operator. If we were to revisit the previously used script
and apply this, our script might now look like the following:

Budget:
Load
 CustomerID & Year as BudgetKey,
 BudgetValue
Inline [
CustomerID, Year, BudgetValue
1, 2013, 10000
2, 2013, 15000
1, 2014, 12000
2, 2014, 17500
];

Sales:
Load
 Date,
 Year,
 CustomerID,
 CustomerID & Year as BudgetKey,
 Value
Inline [
Date, Year, CustomerID, Value
2013-01-12, 2013, 1, 100
2013-02-25, 2013, 2, 200
2013-02-28, 2013, 1, 100
2013-04-04, 2013, 1, 100
2013-06-21, 2013, 2, 200
2013-08-02, 2013, 1, 100

QlikView Data Modeling

[76]

2014-05-12, 2014, 1, 100
2014-05-12, 2014, 2, 200
2014-05-12, 2014, 1, 100
];

When we reload this code, the table viewer will look like the following screenshot:

The synthetic key no longer exists and everything looks a lot neater.

We will ignore any potential data issues with this particular dataset
for now—we will cover more on that later in this chapter.

To see the composite key in action, I like to use a table box with values from both
tables, just to see that the association works:

A table box works very well for this use case. I utilize them all the time when testing
key associations like this. It is almost the only time that I use table boxes these days!
In a normal user interface, a table box can be useful to display transaction-level
information, but you can also use a straight table for this and have far more control
with the chart than with the table. Totals, set analyses in expressions, and visual cues
are all things that you can have in a straight table that you can't have in a table box.

We need to concern ourselves with key collision potentials; in this case, the key
value of 12013, composed of the CustomerID value of 1 and the Year value of 2013.
Let's imagine a further set of values where the CustomerID value is 120 and the Year
value is 13. That would cause a problem because both combinations would be 12013.
For that reason, and this should be considered a best practice, I would prefer to see
an additional piece of text added between the two keys like the following:

Chapter 2

[77]

 ...
 CustomerID & '-' & Year as BudgetKey,
 ...

If we do that, then the first set of values would give a key of 1-2013 and the second
would give a key of 120-13—there would no longer be a concern about key collision.
The text that you use as the separator can be anything—characters such as the hyphen,
underscore, and vertical bar are all commonly used.

Note that if you use keys like this in calculations or Dollar-sign
Expansion (which would not be a good practice), then a hyphen
could be interpreted as a minus sign. We shouldn't really use
keys like that though.

Using one of the Hash functions
A Hash function takes the number of fields as a parameter and creates a fixed length
string representing the hash of those values. The length of the string, and hence the
possibility of having key collisions, is determined by the hash bit length. There are
the following three functions:

• Hash128()

• Hash160()

• Hash256()

The number at the end of the function name (128, 160, or 256) represents the number
of bits that will be used for the hash string. We don't really need to worry too much
about the potential for key collision—in his blog post on the subject, Barry Harmsen,
co-author of QlikView 11 for Developers, Packt Publishing, worked out that the chance
of a collision using Hash128() was one in 680 million (http://www.qlikfix.
com/2014/03/11/hash-functions-collisions/).

Of course, if you do have a large dataset where that risk becomes greater, then using
the Hash256() function instead will reduce the possibility to, effectively, zero.
Of course, a longer hash key will take up more space.

If we were to use a Hash function in our script, it would look like the following:

Budget:
Load
 Hash128(CustomerID, Year) as BudgetKey,
 BudgetValue
 ...

http://www.qlikfix.com/2014/03/11/hash-functions-collisions/
http://www.qlikfix.com/2014/03/11/hash-functions-collisions/

QlikView Data Modeling

[78]

Sales:
Load
 Date,
 Year,
 CustomerID,
 Hash128(CustomerID, Year) as BudgetKey,
 Value
 ...

Notice that the function just takes a list of field values. The Hash functions are
deterministic—if you pass the same values to the function, you will get the same
hash value returned. However, as well as having the same values, the order that
the fields are passed in the function must also be identical.

This load will produce values that look like the following in my table box:

The other thing that is important to know about the Hash functions is that their
deterministic nature should transcend different reloads on different machines.
If you run the same script as I did, on the same version of QlikView, you should
get the same result.

Using the AutoNumber function
One of the problems with both of the two previously mentioned approaches is that
the keys that are generated are string values and, as we saw in the previous chapter,
they will take up a lot of space. It is far more efficient to use integer keys—and
especially sequential integer keys (because they are not stored in the symbol tables).
The AutoNumber function will do that for us.

The AutoNumber function will accept a string value and return an integer. How it
works is that during the brief lifetime of a load script execution, QlikView maintains an
internal database to store the passed string values. If you pass exactly the same value,
then you will get exactly the same integer returned. It can be said to be deterministic
(given the same input, you will get the same output), but only within the current
execution of the script.

Chapter 2

[79]

This last point is important to note. If I pass "XXX" and get a return of
999 today, I cannot guarantee that "XXX" will return 999 tomorrow. The
internal database is created anew at each execution of the script, and so
the integer that is returned depends on the values that are passed during
the load. It is quite likely that tomorrow's dataset will have different
values in different orders so will return different integers.

AutoNumber will accept two possible parameters—a text value and an AutoID.
This AutoID is a descriptor of what list of sequential integers will be used, so we
can see that we have multiple internal databases, each with its own set of sequential
integers. You should always use an AutoID with the AutoNumber function.

When creating a composite key, we combine the AutoNumber function with the
string concatenation that we used previously.

There is a "hybrid" function of AutoNumber and Hash (128 and
256) that will generate the hash value and then use that string in
the AutoNumber calculation. This is useful, but it does not have
the facility to pass the AutoID.

If we modify our script to use AutoNumber, then it should look something like
the following:

Budget:
Load
 Year, CustomerID,
 AutoNumber(CustomerID & '-' & Year, 'Budget') as BudgetKey,
 BudgetValue
 ...

Sales:
Load
 Date,
 Year,
 CustomerID,
 AutoNumber(CustomerID & '-' & Year, 'Budget') as BudgetKey,
 Value
 ...

QlikView Data Modeling

[80]

The table box will look like the following:

We now have a sequential integer key instead of the text values.

One thing that is interesting to point out is that the string values for keys make
it easy to see the lineage of a key—you can discern the different parts of the key.
I will often keep the keys as strings during a development cycle just for this reason.
Then, when moving to production, I will change them to use AutoNumber.

Realizing that facts are calculated at the level
of their table
One thing that new QlikView developers, especially those with a SQL background,
have difficulty grasping is that when QlikView performs a calculation, it performs
it at the correct level for the table in which the fact exists. Now, I know what I just
wrote might not make any sense, but let me illustrate it with an example.

If I have an OrderHeader table and an OrderLine table in SQL Server, I might load
them into QlikView using the following script:

OrderHeader:
LOAD OrderID,
 OrderDate,
 CustomerID,
 EmployeeID,
 Freight;
SQL SELECT *
FROM QVTraining.dbo.OrderHeader;

OrderLine:
LOAD OrderID,
 "LineNo",
 ProductID,
 Quantity,
 SalesPrice,
 SalesCost,
 LineValue,
 LineCost;
SQL SELECT *
FROM QVTraining.dbo.OrderLine;

Chapter 2

[81]

Note that there are facts here at different levels. In the OrderLine table, we have the
LineValue and LineCost facts. In the OrderHeader table, we have the Freight fact.

If I want to look at the total sales and total freights by a customer, I could create a
chart like the following:

Dimension Total Freight Expression Total Sales Expression
CustomerID Sum(Freight) Sum(LineValue)

This would produce a straight table that looks as follows:

Now, this is actually correct. The total freights and sales values are correctly stated
for each customer. The values have been correctly calculated at the level that they
exist in the data model.

If I were to do something similar in SQL, I might create a query like the following:

SELECT
 OH.CustomerID,
 CAST(Sum(OH.Freight) As money) As [Total Freight],
 CAST(SUM(OL.LineValue) As money) As [Total Sales]
FROM OrderHeader OH
INNER JOIN OrderLine OL
ON OH.OrderID=OL.OrderID
GROUP BY OH.CustomerID
ORDER BY 1

QlikView Data Modeling

[82]

The result might look like the following screenshot:

We can see that the sales values match with QlikView, but the freight values are
totally overstated. This is because the freight values have been brought down a
level and are being totaled with the same freight value repeated for every line in
the one order. If the freight value was $10 for an order and there were 10 order
lines, QlikView would report a correct freight value of $10 while the SQL query
would give us an incorrect value of $100.

This is really important for us to know about when we come to data modeling.
We need to be careful with this. In this instance, if a user were to drill into a
particular product, the freight total will still be reported at $10. It is always
worth checking with the business whether they need those facts to be moved
down a level and apportioned based on a business rule.

Joining data
As part of basic training, you should have been introduced to the concepts of join,
concatenate, and ApplyMap. You may have also heard of functions such as Join
and Keep. Hopefully, you have a good idea of what each does, but I feel that it is
important to review them here so that we all know what is happening when we
use these functions and what the advantages and disadvantages are of using the
functions in different scenarios.

Chapter 2

[83]

Understanding Join and Keep
Even though the QlikView data model is an associative one, we can still use joins in
the script to bring different tables together into one. This is something that you will
do a lot when data modeling, so it is important to understand.

As with SQL, we can perform inner, left, right, and outer joins. We execute the joins
in a logically similar way to SQL, except that instead of loading the multiple tables
together in one statement, we load the data in two or more statements, separated
by Join statements. I will explain this using some simple data examples.

Inner joins
An inner join will join two tables together based on matches across common key
values. If there are rows in either table where there are no matches, then those rows
will no longer exist in the final combined table. The following is an example load:

Table1:
Load * Inline [
FieldA, FieldB, FieldC
1, A, 1A
2, B, 2B
3, C, 3C
];

Inner Join (Table1)
Load * Inline [
FieldA, FieldD, FieldE
2, X, 2X
3, Y, 3Y
4, Z, 4Z
];

This will result in a single table with five fields and two rows that looks like
the following:

I describe an inner join as destructive because it will remove rows from either table.
Because of this, you need to think carefully about its use.

QlikView Data Modeling

[84]

Note that in all the examples of Join, we will use the option to include
the table name—as in Join (TableName)—as a parameter to Join.
If you don't include it, then the join will be assumed to be to the last
loaded table. It is always be best practice to explicitly state it.

Left and right joins
I use left joins quite frequently, but rarely a right one. Which is which? Well, the first
table that you load is the left table. The second table that you use the Join statement
on is the right table.

The left join will keep all records in the left, or first, table and will join any matching
rows from the right table. If there are rows in the right table that do not match, they
will be discarded. The right join is the exact opposite. As such, these joins are also
destructive as you can lose rows from one of the tables.

We will use the previous example script and change Inner to Left:

...
Left Join (Table1)
...

This results in a table that looks like the following:

Note that the first row has been retained from the left table, despite there being no
matches. However, FieldD and FieldE in that row are null.

Changing from Left to Right will result in the following table:

In this case, the row from the left table has been discarded while the unmatched row
from the right table is retained with null values.

Chapter 2

[85]

Outer joins
An outer join will retain all the rows from all the tables. Matching rows will have
all their values populated whereas unmatched rows will have null values in the
appropriate fields.

For example, if we replace the Left or Right join in the previous script with the
word Outer, then we will get a table similar to the following:

The keyword Outer is not mandatory. This means that Outer
Join (Table1) and Join (Table1) are the same join.

Cartesian joins
For newbie QlikView developers who have come from the world of SQL, it can be a
struggle to understand that you don't get to tell QlikView which fields it should be
joining on. You will also notice that you don't need to tell QlikView anything about
the datatypes of the joining fields.

This is because QlikView has a simple rule on the join—if you have fields with the
same field names, just as with the associative logic, then these will be used to join.
So you do have some control over this because you can rename fields in both tables
as you are loading them.

The datatype issue is even easier to explain—QlikView essentially doesn't do
datatypes. Most data in QlikView is represented by a dual—a combination
of formatted text and a numeric value. If there is a number in the dual, then
QlikView uses this to make the join—even if the format of the text is different.

But what happens if you don't have any fields to join on between the two tables?
What we get in that scenario is a Cartesian join—the product of both tables.
Let's have a look at an example:

Rene:
Load * Inline [
Field1, Field2
1, A
2, B
3, C
];

QlikView Data Modeling

[86]

Join (Rene)
Load * Inline [
Field3, Field4
4, X
5, Y
6, Z
];

This results in a table like the following:

We can see that every row in the first table has been matched with each row in the
second table.

Now this is something that you will have to watch out for because even with
moderately sized datasets, a Cartesian join will cause a huge increase in the number of
final rows. For example, having a Cartesian join between two tables with 100,000 rows
each will result in a joined table with 10,000,000,000 rows! This issue quite often arises
if you rename a field in one table and then forget to change the field in a joined table.

Saying that though, there are some circumstances where a Cartesian product is a
desired result. There are some situations where I might want to have every value in
one table matched with every value in another. An example of this might be where I
match every account number that I have in the system with every date in the calendar
so that I can calculate a daily balance, whether there were any transactions on that day
or not.

Understanding the effect of duplicate key values on joins
If you have some understanding of joins, you will be aware that when one of
the tables has rows with duplicate values of the join key—which is common with
primary to foreign key joins—then the resultant table will also have multiple rows.
A quick example to illustrate this is as follows:

Dimension:
Load * Inline [

Chapter 2

[87]

KeyField, DimensionValue
1, One
2, Two
3, Three
];

Left Join (Dimension)
Load * Inline [
KeyField, Value
1, 100
2, 200
3, 301
3, 302
];

This will result in a table like the following:

We have two rows for the KeyField value 3. This is expected. We do need to be
careful though that this situation does not arise when joining data to a fact table.
If we join additional tables to a fact table, and that generates additional rows in the
fact table, then all of your calculations on those values can no longer be relied on as
there are duplicates. This is definitely something that you need to be aware of when
data modeling.

What if there are duplicate key values in both tables? For example, suppose that the
first table looked like the following:

Dimension:
Load * Inline [
KeyField, DimensionValue
1, One
2, Two
3, Three.1
3, Three.2
3, Three.3
];

QlikView Data Modeling

[88]

This will lead us to a table that looks like the following:

The resulting number of rows is the product of the number of keys in each table.
This is something that I have seen happen in the field and something that you really
need to look out for. The symptoms will be a far-longer-than-expected load time and
large amounts of memory consumed. Have a look at this, perhaps silly, example:

BigSillyTable:
Load
 Floor(Rand()*5) As Key1,
 Rand()*1000 As Value1
Autogenerate(1000);

Join
Load
 Floor(Rand()*5) As Key1,
 Rand()*1000 As Value2
AutoGenerate(1000);

There are only 1,000 rows in each table with a low cardinality key that is duplicated
(so there is an average of 200 rows per key). The resulting table will have
approximately 200,000 rows!

This may seem a bit silly, but I have come across something similar.

Understanding Keep
The Keep syntax is quite interesting. It operates in a similar way to one of the
destructive joins—it must take an inner, left, or right keyword—that means it
will remove appropriate rows from the tables where there are no matches. However,
it then leaves the tables as separate entities instead of joining them together into one.

As a use case, consider what might happen if you have a list of account numbers
loaded and then used left Keep to load a transaction table. You would be left with
the account and transaction tables as separate entities, but the transaction table would
only contain rows where there was a matching row in the account table.

Chapter 2

[89]

Concatenating rows
Concatenation in QlikView is quite similar to the Union All function in SQL
(we can make it like a simple union by using the Distinct keyword when loading
the tables). As with many things in QlikView, it is a little easier to implement than
a union, in that you don't have to always ensure that both tables being concatenated
have the same number of fields. If you concatenate tables with different numbers of
fields, QlikView will go ahead and add any additional fields and populate nulls into
any fields that didn't already have values. It is useful to review some of the aspects
of Concatenate because we use it very often in data modeling.

Reviewing Concatenate
If you have come across concatenation before, you should be aware that QlikView
will automatically concatenate tables based on both tables having the exact same
number of fields and having all fields with the same names (case sensitive). For
example, consider the following load statements:

Table1:
Load * Inline [
A, B, C
1, 2, 3
4, 5, 6
];

Table2:
Load * Inline [
A, C, B
7, 8, 9
10, 11, 12
];

This will not actually end with two tables. Instead, we will have one table, Table1,
with four rows:

QlikView Data Modeling

[90]

If the two tables do not have identical fields, then we can force the concatenation to
happen using the Concatenate keyword:

Table:
Load * Inline [
A, B, C
1, 2, 3
4, 5, 6
];

Concatenate (Table1)
Load * Inline [
A, C
7, 8
10, 11
];

This will result in a table like the following:

You will notice that the rows where there were no values for field B have been
populated with null.

There is also a NoConcatenate keyword that might be useful for us to know
about. It stops a table being concatenated, even if it has the same field names as
an existing table. Several times, I have loaded a table in a script only to have it
completely disappear. After several frustrating minutes debugging, I discovered
that I have named the fields the same as an existing table—which causes automatic
concatenation. My table hadn't really disappeared, the values had just been
concatenated to the existing table.

Differentiating Concatenate and Join
Sometimes it can be difficult to understand what the effective difference is between
Concatenate and Join and when we should use either of them. So, let's look at a
couple of examples that will help us understand the differences.

Chapter 2

[91]

Here are a couple of tables:

Now, if I load these tables with Concatenate, I will get a resulting table that looks
like the following:

If I loaded this table with Join, the result looks like the following:

We will have a longer data table with Concatenate, but the symbol tables will
be identical. In fact, the results when we come to use these values in a chart will
actually be identical! All the QlikView functions that we use most of the time,
such as Sum, Count, Avg, and so on, will ignore the null values, so we will get
the same results using both datasets.

So, when we have a 1:1 match between tables like this, both Join and Concatenate
will give us effectively the same result. However, if there is not a 1:1 match—where
there are multiple key values in one or more of the tables—then Join will not produce
the correct result, but Concatenate will. This is an important consideration when it
comes to dealing with multiple fact tables, as we will see later.

It is worth considering that if you need to calculate something like
Value1/Value2 on every line, then they will need to be matched with
Join (or ApplyMap as discussed in the following section).

QlikView Data Modeling

[92]

Mapping data with ApplyMap
This is one of my favorite functions in QlikView—I use it all the time. It is extremely
versatile in moving data from one place to another and enriching or cleansing data.
Let's review some of the functionality of this very useful tool.

Reviewing the basic functionality of ApplyMap
The basic function of ApplyMap is to move data—usually text data—from a mapping
table into a dimension table. This is a very normal operation in dimensional modeling.
Transactional databases tend to be populated by a lot of mapping tables—tables that
just have a key value and a text value.

The first thing that we need to have for ApplyMap is to load the mapping table of
values to map from. There are a few rules for this table that we should know:

• A mapping table is loaded with a normal Load statement that is preceded
by a Mapping statement.

• The mapping table can only have two columns.
• The names of the columns are not important—only the order that the

columns are loaded is important:
 ° The first column is the mapping lookup value
 ° The second column is the mapping return value

• The mapping table does not survive past the end of the script. Once the
script has loaded, all mapping tables are removed from memory.

• There is effectively no limit on the number of rows in the mapping table.
I have used mapping tables with millions of rows.

• Mapping tables must be loaded in the script before they are called via
ApplyMap. This should be obvious, but I have seen some confusion around it.

As an example, consider the following table:

Mapping_Table:
Mapping
Load * Inline [
LookupID, LookupValue
1, First
2, Second
3, Third
];

Chapter 2

[93]

There are a couple of things to note. First, let's look at the table alias—Mapping_Table.
This will be used later in the ApplyMap function call (and we always need to explicitly
name our mapping tables—this is, of course, best practice for all tables). The second
thing to note is the names of the columns. I have just used a generic LookupID and
LookupValue. These are not important. I don't expect them to associate to anything in
my main data model. Even if they did accidentally have the same name as a field in my
data model, there is no issue as the mapping table doesn't associate and doesn't survive
the end of the script load anyway.

So, I am going to pass a value to the ApplyMap function—in this case, hopefully, either
1, 2, or 3—and expect to get back one of the text values—First, Second, or Third.

In the last sentence, I did say, "hopefully." This is another great thing about ApplyMap,
in that we can handle situations where the passed ID value does not exist; we can
specify a default value.

Let's look at an example of using the mentioned map:

Table:
Load
 ID,
 Name,
 ApplyMap('Mapping_Table', PositionID, 'Other') As Position
Inline [
ID, Name, PositionID
101, Joe, 1
102, Jane, 2
103, Tom, 3
104, Mika, 4
];

In the ApplyMap function, we have used the Mapping_Table table alias of our mapping
table—note that we pass this value, in this case, as a string literal. We are passing the
ID to be looked up from the data—PositionID—which will contain one of 1, 2, 3, or 4.
Finally, we pass a third parameter (which is optional) to specify what the return value
should be if there is no match on the IDs.

Note that you don't always have to pass a string literal—anything
that returns a string that matches to a previously loaded mapping
table will work.

QlikView Data Modeling

[94]

This load will result in the following table:

We can see that Joe, Jane, and Tom were successfully mapped to the correct position,
whereas Mika, whose ID was 104, did not have a matching value in the mapping
table so ended up with Other as the position value.

Mapping numbers
Something that many people don't think about, but which works very well, is
to use the mapping functionality to move a number from one place to another.
As an example, imagine that I had a product cost table in my database that stored
the averaged cost for each product per month. I want to use this value in my fact
table to calculate a margin amount per line. My mapping load may look something
like the following:

Product_Cost_Map:
Mapping Load
 Floor(MonthStart(CostMonth)) & '-' & ProductID As LookupID,
 [Cost Value] As LookupValue;
SQL SELECT * From [Monthly Product Cost];

A good thing to note here is that we are using a composite key for the lookup ID.
This is quite common and never an issue—as long as you use the exact same syntax
and value types in the ApplyMap call.

Recall that the Floor function will take any numeric value,
remove any decimal part—without rounding—and return just
the integer part. The MonthStart function will always return
the first of the month for any date passed to it.

Once we have this table loaded—and, depending on the database, this could have
millions of rows—then we can use it in the fact table load. It will look something
like this:

Fact:
Load
 ...
 SalesDate,

Chapter 2

[95]

 ProductID,
 Quantity,
 ApplyMap('Product_Cost_Map', Floor(MonthStart(SalesDate)) & '-'
 & ProductID,0)
 *Quantity As LineCost,
 ...

In this case, we use the MonthStart function on the sales date and combine it
with ProductID to create the composite key.

Here, we also use a default value of 0—if we can't locate the date and product
combination in the mapping table, then we should use 0. We could, instead,
use another mapping to get a default value:

Fact:
Load
 ...
 SalesDate,
 ProductID,
 Quantity,
 ApplyMap('Product_Cost_Map',
 Floor(MonthStart(SalesDate)) & '-' & ProductID,
 ApplyMap('Default_Cost_Map', ProductID, 0))
 *Quantity As LineCost,
 ...

So, we can see that we can nest ApplyMap calls to achieve the logic that we need.

Using ApplyMap instead of Join with duplicate rows
We saw earlier in the discussion on joins that where there are rows with duplicate join
IDs in one (or both) of the tables, the join will result in more rows in the joined table.
This is often an undesired result—especially if you are joining a dimension value to
a fact table. Creating additional rows in the fact table will result in incorrect results.

There are a number of ways of making sure that the dimension table that you join
to the fact table will only have one row joined and not cause this problem. However,
I often just use ApplyMap in this situation and make sure that the values that I want
to be joined are sorted to the top. This is because in a mapping table, if there are
duplicate key values, only the first row containing that key will be used.

As an example, I have modified the earlier basic example:

Mapping_Table:
Mapping
Load * Inline [

QlikView Data Modeling

[96]

LookupID, LookupValue
1, First
2, Second.1
2, Second.2
3, Third.1
3, Third.2
3, Third.3
];

We can see that there are now duplicate values for the 2 and 3 keys. When we load
the table as before, we will get this result:

We can see that the additional rows with the duplicate keys are completely ignored
and only the first row containing the key is used. Therefore, if we make sure that the
rows are loaded in the order that we want—by whatever order by clause we need
to construct—we can just use ApplyMap to move the data into the fact table. We will
be sure that no additional rows can possibly be created as they might be with Join.

Dimensional data modeling
There are several methodologies for implementing a data warehouse or data mart
that might be useful to consider when implementing QlikView in an organization.
However, for me, the best approach is dimensional modeling—often called Kimball
dimensional modeling—as proposed by Ralph Kimball and Margy Ross in the book
The Data Warehouse Toolkit, John Wiley & Sons, now available in its third edition.

Some other methodologies, most noticeably that proposed by Bill Inmon, offer a
"top-down" approach to data warehousing whereby a normalized data model is built
that spans the entire enterprise, then data marts are built off this to support lines of
business or specific business processes. Now, QlikView can sit very readily in this
model as the data mart tool, feeding off the Enterprise Data Warehouse (EDW).
However, QlikView cannot implement the normalized EDW.

Chapter 2

[97]

In my opinion, Kimball dimensional modeling, on the other hand, is right up
QlikView's street. In fact, I would suggest that you can build almost all elements
of this type of data warehouse using just QlikView! The difference is that Kimball's
approach is more "bottom-up"—the data marts (in our case, QlikView applications)
are built first and then they can be combined to build a bigger data warehouse. Also,
with this approach, we can build a data framework that power users can make use
of to build their own analyses, beyond what might be achievable with other tools.

In this chapter, I am going to talk about some of the concepts of Kimball dimensional
modeling, but I will not be going into deep detail on Kimball's concepts. I will describe
the concept at a high level and then go in to detail on how that can be applied from
a QlikView point of view. To find out more information on Kimball dimensional
modeling, I recommend the following:

• Buy and read The Data Warehouse Toolkit
• Check out the Kimball Group's online resources at http://www.

kimballgroup.com/data-warehouse-business-intelligence-resources

There are some key fundamental concepts that we should understand about
dimensional modeling. You may already be familiar with some of the terminology.
Ralph Kimball didn't create the concepts of facts and dimensions, and you will come
across those terms in many contexts. However, he has created a solid methodology
for modeling data in multiple different scenarios.

Differentiating between facts and dimensions
Essentially, facts are numbers. They are numbers that we will add up, average,
count, or apply some other calculation to. For example, sales value, sales quantity,
and monthly balance are all facts.

Dimensions are the values that give context to our facts. So, customer or product are
both examples of dimensions. Date is also a good example of a dimension—almost
every fact that you will come across will have a date context.

We store dimensions in a table of attributes. For example, a customer table might
have attributes of name, city, or country. A date table will have attributes such as
year, month, quarter, and week.

http://www.kimballgroup.com/data-warehouse-business-intelligence-resources
http://www.kimballgroup.com/data-warehouse-business-intelligence-resources

QlikView Data Modeling

[98]

We will store one or many facts in a table along with the keys to associate them to the
dimensions. An example of a row in a sales fact table might look like the following:

RowID DateID CustomerID ProductID StoreID Quantity Sales
Value

Sales
Cost

Sales
Margin

2345 20140520 2340000563 1929 34 20 120.00 100.00 20.00

What this row of data tells us is that on a particular date, in a particular store,
a particular customer purchased 20 units of a particular product that had a sales
value of $120.00. We can find out what product was sold by looking for ProductID
1929 in the Product dimension table.

Of course, this is not a normal query! Typically, we might start by selecting a store
and then that would select for us all the fact rows that are associated with that row.
We then have a calculation to add up all the sales values from that set of rows to
give us the total sales for that store.

Understanding the grain
The single row in the previous fact table represents the grain of the data—the lowest
level—that we are going to report on. Typically, for best results, you want the grain
to be the lowest transaction level. In this case, it might not be. This customer might
have bought the same product several times on the same day, so this row would
actually represent an aggregated view of the data. If we added in a new field for, say,
transaction number or perhaps transaction time, then we would increase the number
of rows in the fact table, lowering the level of the data and changing the grain.

When we are designing the model, we need to understand what grain we want the
data to be at. The business requirement will define the grain for us—if it is important
for us to know the times of transactions, then we may want to have the grain at a
lower level. If not, then a higher level is good. Of course, we need to consider that
part of the joy of QlikView is to answer those questions that haven't been asked, so
we may need to consider that, while the business does not need that grain now, they
will perhaps need it in the future. We also need to balance that against the number of
transaction rows in the fact table, which will be the primary driver of the size of our
in-memory document and the speed of results for our users.

Chapter 2

[99]

Understanding star schemas
Once we have loaded the fact table and the four dimension tables discussed
previously, our schema might look something like the following:

This structure, with one fact table and several dimension tables, with the dimensions
all being at one level, is a classic star schema.

QlikView Data Modeling

[100]

If we look at the Product table here, we will note that there is a CategoryID field
and a SupplierID field. This would lead us to understand that there is additional
data available for Category and Supplier that we could load and end up with a
schema like the following:

This is no longer a "pure" star schema. As we add tables in this way, the schema starts
to become more like a snowflake than a star—it is called a snowflake schema.

We discussed in the previous chapter about the potential issues in having many
tables in a schema because of the number of joins across data tables. It is important
for us to understand that it isn't necessary for the snowflake to remain and that
we should actually move the data from the Category and Supplier tables into
the Product table, returning to the star schema. This is not just for QlikView; it is
as recommended by Kimball. Of course, we don't always have to be perfect and
pragmatism should be applied.

By joining the category and supplier information into the Product table, we will
restore the star schema and, from a QlikView point of view, probably improve
performance of queries. The Product table will be widened, and hence the
underlying data table would increase in width also, but we also have the option of
dropping the CategoryID and SupplierID fields so it probably will not have a very
large increase in size. As dimension tables are, generally, relatively smaller than the
fact tables, any additional width in the data table will not unduly increase the size of
the overall document in memory.

Chapter 2

[101]

Summing with facts
There are some complications with facts when it comes to the types of calculations
that we can perform on them. The most basic calculation that we can do with any
fact is to add up the values in that field using the Sum function. But not all facts will
work correctly in all circumstances.

Luckily, most facts will probably be fully additive. This means that we can perform a
Sum function using that field and we will get a sensible and correct answer no matter
what context we apply—no matter what selections we make or charts we use that
calculation in. For example, the Sales Value field is usually going to be additive
across all dimensions and give us a correct answer as we make different selections.

Some facts are only semi-additive. These facts can be summed, but only across
some of the dimensions. For other dimensions, it does not make sense to sum them,
for example, a monthly balance field. It makes sense to select a month and then sum
these balances across accounts, territories, cities, and so on, but it doesn't make sense
at all to sum a balance across months. If the balance in my checking account is about
$100 at the end of every month, it doesn't mean that it will be $1,200 at the end of the
year (though I really wish it did!).

Yet other facts won't be additive at all. These are called non-additive facts. Any ratio
or percent value would not be additive. For example, if we stored the sales margin
percent (the sales margin divided by the sales value) in the fact table, then this could
not be sensibly added up in any way. If possible, we shouldn't have such ratios in the
fact table and should, instead, always retain the original additive facts. It is perfectly
sensible to calculate a margin percent expression like this in QlikView:

Sum([Sales Margin])/Sum([Sales Value])

Because both of the facts involved are additive, the expression will calculate correctly
across all dimensions.

Discovering more about facts
There are a few different types of fact tables that we will encounter reasonably
regularly. These are as follows:

• Transaction
• Periodic snapshot
• Factless

The following sections give a brief description of these and how you may need to
deal with them in QlikView.

QlikView Data Modeling

[102]

Transaction fact tables
The transaction fact table is by far the most common type that you will encounter.
At the lowest grain, each row in the table represents one event that has happened; for
example, a sale of a particular product in a particular store to a particular customer at
a particular time by a particular operator at a particular till. Another example might be
the scanning of a product as it is placed into a pick basket in a warehouse automated
pick system.

Each of these is an atomic event—it is the lowest level of detail that we can have about
the process in question. It also gives us more flexibility from a QlikView point of view
in that we can calculate our results over many different dimensions.

Because this transaction represents one event, there are generally relatively few facts
associated with it. We might, for example, just have quantity and value. If the system
gives us the information, we might also have cost and perhaps a derived margin, but
that would be all.

Periodic snapshot fact tables
We can, as we have already discussed, aggregate transactions to a higher level. If the
retailer does not care about which customer bought a product or at what till, we might
remove the customer, till, time, and operator from the transaction and then roll up the
values to just date, store, and product, summing up the facts appropriately.

Often, this is done for a performance benefit because less rows will equal less memory
used by QlikView. However, when we change the grain and reduce the number of
dimensions, we also have the opportunity to add other facts to the table from other
events. For example, retailers often throw out unsaleable items—this is called waste.
This event would also have a date, store, and product associated with it so we could
join the two fact tables to create a new, wider fact table. Any other events in the store
that have a date and product associated with them could equally be joined in.

The fact tables are called periodic snapshot fact tables. Usually they have a period
associated with them such as a particular day or rolled up to week or month.

In the previous example, the periodic snapshot table will have the same structure as
a transaction fact table and it is fair to say that it still counts as a transaction fact table
for modeling purposes. The facts are rolled up from the underlying facts and can be
treated the same. However, there are periodic snapshot tables that will represent the
end of period position for a value—for example, an account balance or an inventory
level—and we need to be careful with these because the facts will be semi-additive.

Chapter 2

[103]

Factless fact tables
There are fact tables that record an atomic event that doesn't have any particular
amount or other measure associated with it. For example, many retailers will have a
person on the shop floor who has the task of wandering around checking for empty
shelves. If they find a shelf where all the stock has been sold, they scan the product bar
code off the shelf and this goes into the backend system. This "gap count" just records
the date, time, shelf number, and product. There is no quantity or value involved.

Quite often, we will create a fact—usually just with a value of 1—to be used
in calculations.

Dealing with nulls in fact tables in QlikView
Because QlikView isn't too hung up on referential integrity of data, we as designers
should always be thinking about it because we shouldn't really allow a disconnect
between dimension tables and fact tables. Null values in fact fields are not a problem
for QlikView. They will get completely ignored in the majority of calculations, and
this is the correct behavior that we want.

Null values in dimension keys are a different matter. QlikView will allow them, but
this causes us a problem when it comes to charts. Let's look at a very simple example:

Dimension:
Load * Inline [
CustomerID, Customer, Country
1, Customer A, USA
2, Customer B, USA
3, Customer C, UK
4, Customer D, UK
];

Fact:
Load
*
Inline [
Date, CustomerID, Sales Value
2014-01-01, 1, 100
2014-01-01, 2, 100
2014-01-01, 3, 100
2014-01-01, 4, 100
2014-01-01, , 100
2014-01-02, 1, 100
2014-01-02, 2, 100
2014-01-02, 4, 100
];

QlikView Data Modeling

[104]

Note that this inline statement won't actually produce a null value;
it will instead produce a zero length string. However, this is good
enough for the example.

If we create a chart for the sum of sales value by country, it will look like
the following:

We have a bar that shows an amount associated with a null value. We can't select this
bar to find out any other information. I can't drill down to discover the transactions
that are not associated to a country.

The way to handle this is to actually create an additional row in the dimension table
with a default value and key that we can use in the fact table:

Dimension:
Load * Inline [
CustomerID, Customer, Country
0, Missing, Missing
1, Customer A, USA
2, Customer B, USA
3, Customer C, UK
4, Customer D, UK
];

Fact:
Load
 Date,

Chapter 2

[105]

 If(Len(CustomerID)=0, 0, CustomerID) As CustomerID,
 [Sales Value]
Inline [
Date, CustomerID, Sales Value
2014-01-01, 1, 100
2014-01-01, 2, 100
2014-01-01, 3, 100
2014-01-01, 4, 100
2014-01-01, , 100
2014-01-02, 1, 100
2014-01-02, 2, 100
2014-01-02, 4, 100
];

We now have a value in the Country field that we can drill into to discover fact table
rows that do not have a customer key:

There may actually be cases where the key is not missing but is just not applicable.
In that case, we can add an additional "Not Applicable" row to the dimension table
to handle that situation.

QlikView Data Modeling

[106]

Designing dimension tables
We have a good idea now about fact tables, but we have only briefly talked about
the dimension tables that create the context for the facts.

Denormalizing dimensions and conformed
dimensions
We discussed star schemas previously, and we discussed that snowflake schemas
are not ideal for QlikView and also not recommended by Kimball.

Snowflaking dimensions is akin to the normalization process that is used to design
transactional databases. While it may be appropriate for transactional databases,
where insert speed is the most important thing, it is not appropriate for reporting
databases, where retrieval speed is the most important thing. So denormalizing the
dimension tables, by joining the lower level tables back into the main table (joining
category and supplier into product in the previous example), is the most efficient
method—and this applies for QlikView as well as any database warehouse.

There is another excellent reason for creating a single table to represent a dimension.
We are generally not going to build only one QlikView document. We will probably
have many business processes or areas that we will want to cover with our
applications. These QlikView documents might share dimensions, for example, both
a sales and a purchases application will have a product dimension. Depending on the
organization, the product that you buy might be the same as the products that you sell.
Therefore, it makes sense to build one product dimension, store it to QVD, and then
use it in any documents that need it.

Dimensions created that will be shared across multiple dimensional models are called
conformed dimensions.

Understanding surrogate keys
In Kimball dimensional modeling, there is the concept of replacing the original
primary key values of dimensions, in both the dimension and fact tables, with
a sequential integer value. This should especially be the case where the primary
key is made up of multiple key values.

We should recognize this immediately in QlikView as we already discussed it in
Chapter 1, Performance Tuning and Scalability—we use the AutoNumber function to
create a numeric key to associate the dimension with the fact table.

If necessary, we can retain the original key values in the dimension table so that
they can be queried, but we do not need to retain those values in the fact table.

Chapter 2

[107]

Dealing with missing or late arriving dimension
values
A late arriving dimension value is a value that does not make it into the dimension
table at the time that we load the information into QlikView. Usually, this is a timing
issue. The symptoms are the same as if the dimension value doesn't exist at all—we
are going to have a referential integrity issue.

Let's look at a quick example:

Dimension:
Load * Inline [
CustomerID, Customer, Country
1, Customer A, USA
2, Customer B, USA
3, Customer C, UK
4, Customer D, UK
];

Fact:
Load * Inline [
Date, CustomerID, Sales Value
2014-01-01, 1, 100
2014-01-01, 2, 100
2014-01-01, 3, 100
2014-01-01, 4, 100
2014-01-01, 5, 100
2014-01-02, 1, 100
2014-01-02, 2, 100
2014-01-02, 4, 100
];

We can see that we have four rows in the dimension table, but we have five distinct
key values in the fact table. We need to add additional rows to the dimension table
derived from the fact table:

Concatenate (Dimension)
Load Distinct
 CustomerID,
 'Missing ' & CustomerID As Customer,
 'Missing ' & CustomerID As Country
Resident
 Fact
Where Len(Lookup('CustomerID', 'CustomerID', CustomerID,
'Dimension'))=0;

QlikView Data Modeling

[108]

You might wonder why I am not using a Not Exists function here. Exists will
check in the symbol table to see whether a value has already been loaded. We only
have one symbol table per field and, in this case, both tables have the same field
name—CustomerID—and hence will have the same symbol table. Because the fact
table has been loaded, the symbol table will be fully loaded with all of the available
values, so a Not Exists function will never return true and no additional values
will be loaded.

Defining Kimball's four-step dimensional
design process
Now that we know a bit more about the definitions around facts and dimensions,
we can talk about Kimball's dimensional design process. This, as a basic tenet,
can be applied to almost every QlikView application that you might build.

The four steps are as follows:

• Select the business process
• Declare the grain
• Identify the dimensions
• Identify the facts

Selecting the business process
There are often two ways that developers choose to pick the subject of their QlikView
documents. One is line-of-business—for example, Sales, HR, Finance, and so on. The
other is by business process. A business process is a set of activities that a business
performs that may generate a set of metrics, for example, process orders, ship orders,
or order stock. Each process will generate one set of facts.

The difference between a line-of-business application and a process-based application
is sometimes so subtle that you'll feel there isn't really a difference at all! This is
especially true where the identified line-of-business appears to only really have one
process within an organization.

Take selling for example. In some organizations, the only thing that is important
about selling is the taking orders process. If you are asked to build a sales application
for that organization, the line-of-business and the process will be the same. In other
organizations, however, they will also be looking for information on customer and
prospect contacts—visits, phone calls, and so on.

Chapter 2

[109]

The line-of-business application will probably want to try and load the facts from
both processes so as to compare them and answer business questions about the
relationship between visits and orders. The process-based application will tend
to just focus on the one set of facts.

In a "pure" Kimball dimensional model, we focus on the process model and one fact
table. Where we are building a more line-of-business application with multiple fact
tables, we should apply this four step sequence for each process. We will discuss
later how we handle a QlikView model with multiple fact tables.

So, the first step is to select that business process.

Declaring the grain
We have already learned what is meant by grain—the level of detail in the fact
table. By declaring the grain, we are specifying what level of aggregation we
want to deal with.

In almost every situation, the best choice of grain is the atomic choice—the
transactional data at the lowest level of detail. Going atomic means that our users can
slice and dice the information by whatever dimensions they want. By making a choice
to aggregate the fact table, we remove some choice from the user. For example, if we
aggregate the retail sales to day, store, and product, we remove the ability of the users
to interrogate the data by till, operator, or time of day.

Identifying the dimensions
The dimensions that will be used will pretty much fall out of grain declaration. The
complication here is where we are doing a line-of-business app; while we are doing
this step by step for one process at a time, we need to be aware of those dimensions
that are shared, and we should be sure to have a conformed dimension.

Identifying the facts
We need to specify what facts—what numbers in the data—we are going to use.
We also need to think about any derived facts that might be necessary. For example,
if we have a quantity and price, do we need to derive the line value?

QlikView Data Modeling

[110]

Learning some useful reusable dimension
methods
There are a couple of things that you will come up against repeatedly in creating
QlikView documents. One that you will pretty much use in all QlikView documents
is the creation of a calendar dimension. Another, that you might not use in every
application but will come in useful, is dealing with hierarchies. Lastly, we will look
at the practice of creating dimensional facts.

Creating a calendar dimension
Almost every fact table that we will come across will have a date of some sort—at
least one, there may be more. Quite often, the source system that we will be extracting
the data from may have a calendar table that we can use as the dimension table, but
sometimes it doesn't and we need to derive one ourselves.

The basic idea of creating a calendar dimension is to first establish the bounds—what
are the earliest and latest dates that should be included. Once we have that, we can
generate a row for every date between those bounds (inclusive) and use QlikView
functions to derive the date parts—year, month, week, and so on.

In training, you may have come across some methods to establish the minimum and
maximum values of the date by querying the fact table. For example, you may have
seen something like the following:

MinMaxDates:
Load
 Min(OrderDate) As MinDate,
 Max(OrderDate) As MaxDate
Resident
 Fact;

Let vStartDate=Peek('MinDate');
Let vEndDate=Peek('MaxDate');

Drop Table MinMaxDates;

There are some problems with this method, so I rarely use it outside the classroom.

One of them is that once you get past a million fact table records, the time taken
to calculate the min and max values becomes more and more perceptible and
unacceptable in a well-designed script.

Chapter 2

[111]

However, for me, the main issue is that it is a pointless exercise. The minimum
date will rarely, if ever, change—it is a well-known value and can therefore be
stated in the script without having to try and calculate it every time. The maximum
date, depending on the business, is almost always going to be today, yesterday, or
some derivation thereof. Therefore, it is easily calculable without having to scan
down through a data table. My calendar script is almost always going to start off
something like the following:

Let vStartDate=Floor(MakeDate(2009,1,1));
Let vEndDate=Floor(Today());
Let vDiff=vEndDate-vStartDate+1;

So, I am stating that the first date for my data is January 1, 2009. The end date is
today. When working with dates, I will always transform them to integer values,
especially when used with variables. Integers are a lot easier to deal with. I will also
always calculate the number of dates that I will need in my calendar as the last date
minus the first date plus 1. The rest of my script might look like the following:

Calendar:
Load *,
 Date(MonthStart(DateID), 'YYYY-MM') As YearMonth,
 Year & '-' & Quarter As YearQuarter,
 WeekYear & '-' & Num(Week, '00') As YearWeek;
Load
 DateID,
 Year(DateID) As Year,
 Month(DateID) As Month,
 Date(DateID) As Date,
 Day(DateID) As Day,
 Week(DateID) As Week,
 'Q' & Ceil(Month(DateID)/3) As Quarter,
 WeekYear(DateID) As WeekYear,
 -Year2Date(DateID) As YTD_Flag,
 -Year2Date(DateID, -1) As LYTD_Flag;
Load
 RecNo()-1+$(vStartDate) As DateID
AutoGenerate($(vDiff));

There are a couple of preceding loads here, which I quite like to use to make scripts
more readable. If you haven't come across preceding loads, any load statement that
is just a list of field names and functions, terminated with a semicolon, will load its
data from the next statement down in the script.

QlikView Data Modeling

[112]

In this case, at the bottom of the pile is an AutoGenerate function that will generate
the required number of rows. We use a calculation based on the current record number
and the start date to calculate the correct date that we should use. The preceding load
directly above it will create all the date parts—year, month, week, and so on, and a
couple of year-to-date flags that we can use in calculations. The topmost preceding
load will use fields created in the middle part to create additional fields.

If you really need a script to derive the calendar table from the data, I can highly
recommend the script published on the Qlik community website by Torben Seebach
from itelligence in Denmark at http://community.qlik.com/docs/DOC-6662.

Unwrapping hierarchies
Way back in the day, there was a piece of script going around that would unwrap
a hierarchical relationship in data. It was the most complicated piece of script that
you could imagine—but it worked. It was so popular that Qlik decided to create
new functions in QlikView to do the operation. There are two—Hierarchy and
HierarchyBelongsTo.

Creating leaves with Hierarchy
The Hierarchy function will unwrap the hierarchy and create multiple leaf nodes
for each level of the hierarchy. Let's create a very simple hierarchical table:

Load * Inline [
NodeID, Location, ParentID
1, World,
2, EMEA, 1
3, Americas, 1
4, AsiaPac, 1
5, USA, 3
6, Canada, 3
7, Brazil, 3
8, UK, 2
9, Germany, 2
10, France, 2
11, China, 4
12, Japan, 4
13, New York, 5
14, Texas, 5
15, California, 5

http://community.qlik.com/docs/DOC-6662

Chapter 2

[113]

16, London, 8
17, Greater Manchester, 8
18, Manchester, 17
19, Bavaria, 9
20, Munich, 19
21, New York, 13
22, Heuston, 14
23, San Francisco, 15
];

Each row has a node key, a name, and a parent key that refers to the node key of the
level above. So, USA's parent key is 3, which refers to the node key of the Americas.

The first three parameters of the Hierarchy function are mandatory. The other
parameters are optional. The parameters are as follows:

Parameter Description
NodeID This is the unique key for each row in the input table.
ParentID This is the key that refers to the parent's node key.
NodeName This is the field that has the name of the node.
ParentName If we want to create a new field to store the name of the node's

parent, we can pass a string value here (that means the text is
passed in single quotes).

PathSource If we want a path field—a single field containing the full
hierarchical path—then we need to tell the functions which
field contains the text. Usually, this will be the same as the
NodeName field, and if you leave it blank, then the NodeName
field will be used.

PathName Again, if we want a path field, we need to specify a name for
it—this is a string value, so the text must be in single quotes.

PathDelimiter For the path field, this specifies the value that should separate
each of the values—a string value in single quotes.

Depth We can have a field created to store the level in the hierarchy.
We pass the desired name of the new field as a string value in
single quote marks.

We don't need to have the path or the depth fields created, but they can be useful
to have.

QlikView Data Modeling

[114]

To change the preceding table into a full hierarchy, we add the Hierarchy statement
above the Load statement:

Hierarchy(NodeID, ParentID, Location, 'Parent Location', 'Location',
'PathName', '~', 'Depth')
Load * Inline [
...

This will produce a table that looks like the following:

If the PathName field is added as a listbox, the Show as TreeView option can be
specified on the General properties tab:

With this option turned on, the listbox will be presented in a tree view:

Chapter 2

[115]

Creating parent associations with
HierarchyBelongsTo
The HierarchyBelongsTo function is slightly different in that it unwraps the link
from parent to child and makes it navigable in QlikView. Each child node is associated
with its parent, grandparent, and so on. We can also create a field to capture the depth
difference between node and ancestor.

The parameters are as follows—only the DepthDiff parameter is optional:

Parameter Description
NodeID This is the unique key for each row in the

input table.
ParentID This is the key that refers to the parent's

node key.
NodeName This is the field that has the name of the

node.
AncestorID This is a string value, passed in single

quote marks, to specify a name for the
field to store the ancestor key.

AncestorName This is a string value, passed in single
quote marks, to specify a name for the
field to store the name of the ancestor.

DepthDiff If you want this field created, pass a string
value, in single quote marks, for the name
that you want for the field.

Taking the inline table of the previous locations, we can replace the Hierarchy
function with a HierarchyBelongsTo function as shown:

HierarchyBelongsTo (NodeID, ParentID, Location, 'AncestorID',
'AncestorName', 'DepthDiff')
Load * Inline [
...

QlikView Data Modeling

[116]

Then, we will obtain a table that looks like the following:

This table has all the nodes associated to their parents and vice versa.

Creating dimensional facts
Most of the facts that we deal with in the fact table are numbers that we will calculate
and recalculate based on a user's selections. It can sometimes be useful for us to
precalculate some values in the script that are less dependent on other dimensions
and store them in the dimension table. Some examples are:

• Customer balance
• Number of orders this year
• Number of orders last year
• Current stock quantity

Chapter 2

[117]

These values should all be calculable from the fact table, but having them precalculated
in the dimension table means that performance can be improved. Having them in
the dimension table also makes them easier to use as dimension type values—we can
query and group by them.

Creating these facts in the script is as simple as loading and grouping from the fact
table, for example:

Left Join (Customer)
Load
 CustomerID,
 Count(OrderID) As [Orders This Year],
 Sum([Line Value]) As [Sales This Year]
Resident Fact
Where Year(OrderDate)=Year(Today())
Group by CustomerID;

Handling slowly changing dimensions
For many dimensions, we are not usually worried about changes being made in the
underlying system. If a salesperson gets married and their surname changes from
"Smith" to "Jones," we just reload the QlikView document and the new surname will
appear in the selectors. However, if the same person changes from the inside sales
team to the northwest sales team, just updating the data means that sales attributed
to that salesperson will no longer get attributed to the correct team.

These changes to the dimensions do not happen very frequently and are called
slowly changing dimensions (SCDs). Kimball defines eight different methods
of handling SCDs, from Type 0 to Type 7. The first example discussed previously,
the change of surname, is an example of Type 1—simply update the value (Type 0
says to use the original value). The second change, where the sales team is updated,
should be handled by Type 2—add a new row to the dimension table. Type 1 and
Type 2 will be, by far, the most common ways of handling SCDs.

For a full list of the SCD handling types with descriptions, see The Data Warehouse
Toolkit or go to http://www.kimballgroup.com/data-warehouse-business-
intelligence-resources/kimball-techniques/dimensional-modeling-
techniques/.

http://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/
http://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/
http://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/

QlikView Data Modeling

[118]

The rest of this section will talk about Type 2. If we are lucky, either the underlying
dataset or the ETL that loads the data warehouse where we are getting our data from
will already record start and end dates for the validity of the records, for example,
something like the following:

SalesPersonID Name Territory From To
1 Joe Bloggs NE 01/01/2009
2 Jane Doe Inside 01/01/2009 12/31/2013
2 Jane Doe NW 01/01/2014

Let's discuss different methods of how we can handle this.

Taking the most recently changed record
using FirstSortedValue
The first method that can be used is just to transform the Type 2 data into Type 1
data and treat it as if the additional records were just updates.

We can use a function in QlikView called FirstSortedValue. The function can
be used within a Group By load expression and will return the first value of a field
based on the grouped fields and a sort field. Let's look at an example, just using the
three rows mentioned previously:

Data:
Load * Inline [
SalesPersonID, Name, Territory, From, To
1, Joe Bloggs, NE, 2009-01-01,
2, Jane Doe, Inside, 2009-01-01, 2013-12-31
2, Jane Doe, NW, 2014-01-01,
];

Inner Join (Data)
Load
 SalesPersonID,
 FirstSortedValue(Distinct Territory, -From, 1) As Territory
Resident
 Data
Group by SalesPersonID;

Chapter 2

[119]

The magic is in the FirstSortedValue function. The parameters are as follows:

Parameter Meaning
Distinct When you sort the values in a dataset, it is possible that there might be

more than one row with the same sort. The default functionality is to
return a null value in this case. When we specify Distinct, one of the
values will be returned, although we can only assume that the value
returned will be based on load order.

Territory This is the field value that we want to be returned after the sort is
performed.

-From This is the field (in this case a date field) that defines the sort order. Sort
order is lowest to highest. By adding a minus sign before the field name,
we change the sort order to highest to lowest—this is what we want in
this case because we want the latest date.

1 This is an optional parameter and 1 is the default value. This specifies
which row we want after the values are sorted.

The result of this join is shown in the following table:

Of course, this is not what we really want in this situation, and we need to look at
further alternatives.

Using IntervalMatch with SCDs
QlikView has a great function called IntervalMatch that works very well in
situations where we have start and end dates and we want to match this to a
dimension such as a calendar.

To see it in action, let's load some data. First, we will load the tables as separate
entities. We should create a unique key in the salesperson table to associate into
the fact table. We also need to back-fill the To date with a value if it is blank—we
will use today's date:

SalesPerson:
Load
 AutoNumber(SalesPersonID & '-' & Territory & '-' & From, 'SP') As
SP_ID,
 SalesPersonID,
 Name,

QlikView Data Modeling

[120]

 Territory,
 From,
 If(Len(To)=0, Today(), To) As To
Inline [
SalesPersonID, Name, Territory, From, To
1, Joe Bloggs, NE, 2009-01-01,
2, Jane Doe, Inside, 2009-01-01, 2013-12-31
2, Jane Doe, NW, 2014-01-01,
];

Fact:
Load * Inline [
OrderDate, SalesPersonID, Sales Value
2013-01-01, 1, 100
2013-02-01, 2, 100
2014-01-01, 1, 100
2014-02-01, 2, 100
];

Now, this will create a false association:

If we do a calculation based on the Sales Person column, we will actually get the
correct result:

However, if we calculate on Territory, the result is incorrect:

Chapter 2

[121]

The result actually doesn't look like it makes any sense—although it is perfectly
logical if we think about it.

At this stage, we can introduce IntervalMatch:

LinkTable:
IntervalMatch(OrderDate, SalesPersonID)
Load
 From,
 To,
 SalesPersonID
Resident
 SalesPerson;

This will create a table, called LinkTable, with four fields—OrderDate,
SalesPersonID, From, and To—containing the logical association between the
order date, sales person, and the from and to dates.

Now, we are not finished because we also have a synthetic key that we should
remove. What we need to do is join the SP_ID field from the salesperson table into
this link table and then we can join OrderDate, SalesPersonID, and SP_ID from
the link table into the fact table. Once that is done, we can drop the link table and
also drop SalesPersonID from the fact table (as the association will be on SP_ID).

This will look like the following:

Left Join (LinkTable)
Load
 From,
 To,
 SalesPersonID,
 SP_ID
Resident
 SalesPerson;

Left Join (Fact)
Load
 OrderDate,
 SalesPersonID,
 SP_ID
Resident
 LinkTable;

Drop Table LinkTable;
Drop Field SalesPersonID From Fact;

QlikView Data Modeling

[122]

The resulting table structure will look like the following:

The straight table of sales by territory will now look like the following:

Using hash to manage from/to dates
The from/to dates that we have in the data source should hopefully be managed
by either the source application or an ETL tool. However, sometimes QlikView is
the ETL tool, and we need to manage those from/to dates as best we can.

One method we can do is to load the data with a hash key (see Using one of the Hash
functions earlier in this chapter) that encapsulates all the field values in each row.
We can then store the data to QVD. Using this key, we should be able to detect
when the data changes. If it changes, we can then load the new data and add to
the data in the QVD.

We can load the initial set of data, with an initial start date, in the following manner:

SalesPerson:
LOAD
 Hash256(SalesPersonID, Name, Territory) As HashKey,
 SalesPersonID,
 Name,
 Territory,
 '2009-01-01' As From
FROM
[..\Scripts\SalesPersonList_Initial.txt]

Chapter 2

[123]

(txt, codepage is 1252, embedded labels, delimiter is ',', msq);

Store SalesPerson into SalesPerson.QVD;

Now, once we have the QVD built, we can have a daily reload process that loads the
QVD, loads the current salesperson file, and compares for hashes that don't already
exist. If there are a few that don't exist, we can add them with today as the From date
in the following manner:

SalesPerson_Temp:
LOAD HashKey,
 SalesPersonID,
 Name,
 Territory,
 From
FROM
SalesPerson.QVD
(qvd);

Concatenate (SalesPerson_Temp)
LOAD
 Hash256(SalesPersonID, Name, Territory) As HashKey,
 SalesPersonID,
 Name,
 Territory,
 Date(Today(), 'YYYY-MM-DD') As From
FROM
[..\Scripts\SalesPersonList_Current.txt]
(txt, codepage is 1252, embedded labels, delimiter is ',', msq)
Where Not Exists(HashKey, Hash256(SalesPersonID, Name, Territory));

Store SalesPerson_Temp into SalesPerson.QVD;

As long as the data in the current dataset doesn't change, the existing QVD will stay
the same. If it does change, the new or updated rows will be added to the QVD.

If we are using QlikView data files to store slowly changing
dimensions in this way, we need to be aware that QVDs are
not considered to be a resilient persistent storage method.
Appropriate backups need to be put in place because if you
lose these QVDs, then you lose the change information.

QlikView Data Modeling

[124]

Now, you may have noticed that I have called the table SalesPerson_Temp. This is
because I am not finished with it yet. I need to now calculate the To date. I can do
this by sorting the list by salesperson and date, with the date in descending order—
that means that the first row for each salesperson will be the most recent date and
therefore the To date will be today. On subsequent rows, the To date will be the
previous row's From date minus one day:

SalesPerson:
Load
 SalesPersonID,
 Name,
 Territory,
 From,
 Date(If(Previous(SalesPersonID)<>SalesPersonID,
 Today(),
 Previous(From)-1), 'YYYY-MM-DD') As To
Resident
 SalesPerson_Temp
Order by SalesPersonID, From Desc;

Drop Table SalesPerson_Temp;

Now, we have our table with to/from dates that we can use with an interval match
as demonstrated in the previous section.

Dealing with multiple fact tables in
one model
In data models designed around business processes, we will often have just one
source fact table. If we have additional fact tables, they tend to be at a similar grain
to the main fact table, which is easier to deal with. Line-of-business documents may
have fact tables from lots of different sources that are not at the same grain level at
all, but we are still asked to deal with creating the associations. There are, of course,
several methods to deal with this scenario.

Chapter 2

[125]

Joining the fact tables together
If the fact tables have an identical grain, with the exact same set of primary keys,
then it is valid to join, using a full outer join, the two tables together. Consider the
following example:

Fact:
Load * Inline [
Date, Store, Product, Sales Value
2014-01-01, 1, 1, 100
2014-01-01, 2, 1, 99
2014-01-01, 1, 2, 111
2014-01-01, 2, 2, 97
2014-01-02, 1, 1, 101
2014-01-02, 2, 1, 98
2014-01-02, 1, 2, 112
2014-01-02, 2, 2, 95
];

Join (Fact)
Load * Inline [
Date, Store, Product, Waste Value
2014-01-01, 1, 1, 20
2014-01-01, 2, 1, 10
2014-01-02, 2, 2, 11
2014-01-03, 2, 1, 5
];

This will produce a table that looks like the following:

We know from our previous discussion about null values in fact tables that QlikView
will perfectly handle these values for all calculations.

QlikView Data Modeling

[126]

Concatenating fact tables
Concatenation of tables instead of joining them is often a go-to strategy for the
creation of combined fact tables. It works well because logically we end up with
the same result as joining. Also, if there is any suspicion that there are duplicate
keys (so, in our example, two or more rows for the same date, Store and Product—
which may be valid), then concatenation will still work where a join will not. In the
previous example, if we were to concatenate rather than join, then the table would
look like the following:

One thing that we need to consider is that this table is longer than the previous one
while still being as wide. Therefore, it will take up more space in memory.

It can also work to concatenate fact tables that have a different grain. In that case,
it is a good idea to populate the key values that are missing with a key value pointing
to the "not applicable" value in the dimension, as we discussed earlier.

Changing the grain of a fact table
We mentioned previously that we can reduce the granularity of a fact table by
aggregating the facts to a smaller subset of dimensions—for example, removing
transaction time and aggregating to transaction date. There may be other occasions,
and good business reasons, where you have a fact table at one grain and want to make
it more granular to match with another fact table. For example, suppose that I have
sales data by date and have budget data by week; I may want to split the budget
down to the day level to give me more granularity in my day-by-day analysis.

Chapter 2

[127]

Imagine a scenario where we are going to load the weekly budget but we want
to apportion that over the days in a different ratio—to reflect general trading
conditions. The percentages that we want per day are as follows:

Day Percentage
Monday 10%
Tuesday 13%
Wednesday 15%
Thursday 17%
Friday 20%
Saturday 25%
Sunday 0%

We can load a mapping table with this information and then use that to calculate the
correct daily value:

Budget_Day_Percent:
Mapping Load * Inline [
Day, Percentage
0, .10
1, .13
2, .15
3, .17
4, .20
5, .25
6, 0
];

Budget:
Load
 YearWeek,
 Store,
 Product,
 [Budget Value] As WeekBudget
From Budget.qvd (QVD);

Left Join (Budget)
Load
 YearWeek,
 Date
From Calendar.qvd (QVD);

QlikView Data Modeling

[128]

Left Join (Budget)
Load
 Date,
 Store,
 Product,
 WeekBudget
 * ApplyMap('Budget_Day_Percent', WeekDay(Date), 0)
 As [Budget Value]
Resident
 Budget;

Drop Field WeekBudget;

Linking fact tables of different grains
If the fact tables have different grains, especially where they have quite different
dimension keys, only sharing a few, it often doesn't make sense to concatenate
them—we just create a wide and long fact table that has many null values. In that
case, it makes more sense to create a link table to associate the two tables.

A link table is pretty much exactly like a synthetic key table, except that we are
controlling the creation of composite keys. There are a couple of simple rules for
the creation of link tables:

• Create a key in each fact table that will associate the rows in the fact table
to the link table. This will mostly be a combination of the keys that we are
going to use in the link table using AutoNumber.

• Use a mixture of concatenation and joins to create the link table.
• Drop the key fields that have been added to the link table from the fact tables.

I did once have a different approach to this, using primary keys for each fact table,
but the preceding approach is far simpler.

Let's look at an example. We will return to retail sales and budgets, but this time we
will have very different grains that are not easily changeable. We will have a date,
store, and product, but the sales information will be down to till, operator, and time.
There is very little chance of us manipulating the budget data down to this level.

Now, it is valid to concatenate these tables as we discussed earlier. Once you have
used both techniques a number of times, you will be able to make a good judgment
of which one to use on a case-by-case basis. Most often, the overriding consideration
should be memory size and lower memory equals lower cache and better performance
for more users.

Chapter 2

[129]

The following is the example load:

Sales:
LOAD
 AutoNumber(Floor(Date) & '-' & Store & '-' & Product, 'SB_Link') As
SB_Link,
 *
INLINE [
 Date, Store, Product, Till, Operator, Time, Sales Quantity, Sales
Value
 2014-01-01, 1, 1, 1, 1, 09:00:00, 1, 12.12
 2014-01-01, 1, 2, 1, 1, 09:01:30, 2, 3.33
 2014-01-01, 2, 1, 3, 5, 10:11:01, 4, 17.88
 2014-01-01, 2, 2, 5, 5, 12:02:22, 1, 1.70
];

Budget:
LOAD
 AutoNumber(Floor(Date) & '-' & Store & '-' & Product, 'SB_Link') As
SB_Link,
 *
INLINE [
 Date, Store, Product, Budget Value
 2014-01-01, 1, 1, 20.00
 2014-01-01, 1, 2, 3.00
 2014-01-01, 2, 1, 20.00
 2014-01-01, 2, 2, 3.00
];

Link_Table:
Load Distinct
 SB_Link,
 Date,
 Store,
 Product
Resident
 Sales;

Join (Link_Table)
Load Distinct
 SB_Link,
 Date,
 Store,

QlikView Data Modeling

[130]

 Product
Resident
 Budget;

Drop Fields Date, Store, Product From Sales;
Drop Fields Date, Store, Product From Budget;

This will produce a model like the following:

In this case, we happen to have all the fields that we are using in the link table in
both tables. What happens if we have a different table in the mix that only has two
of those fields? For example, if we have a table containing the current stock levels
for each product by store, we can add this to the link table in the following manner:

Store_Stock:
Load
 AutoNumber(Store & '-' & Product, 'SS_Link') As SS_Link,
 *
Inline [
Store, Product, Stock Level
1, 1, 12.00
1, 2, 2.00
2, 1, 6.00
2, 2, 2.00
];

Join (Link_Table)
Load Distinct
 SS_Link,
 Store,
 Product
Resident
 Store_Stock;

Drop Fields Store, Product from Store_Stock;

Chapter 2

[131]

The data model will now look like the following:

We can continue to add keys to this table like this—either joining or concatenating.
We can also, if necessary, build two or three link tables and then concatenate them
together at the end.

Drilling across with document chaining
One of the basics of dimensional modeling is the ability to drill between models
to answer questions. There are a few situations in QlikView that make this an
important consideration, for example:

• We might have multiple data models, with some shared dimensions,
that might be difficult technically, or even excluded by license,
to associate within one QlikView document.

• Most analysis for most users can be performed on an aggregated,
low-memory-footprint data model, but for some users on some
occasions, they need to drill down to a lower level of detail.

• In some situations, the number of applications is not a consideration,
and we create multiple applications within different business areas
but want users to have some options to link between them.

QlikView handles this quite well with the document chaining function. As with any
other system where you need to drill across, the ability to do so is entirely dependent
on the use of conformed dimensions.

www.allitebooks.com

http://www.allitebooks.org

QlikView Data Modeling

[132]

To enable document chaining with the ability to drill across, we need to add an
action to a suitable object (button, text object, gauge chart, or line object) with an
External action type of Open QlikView Document. We can see the settings for
this in the following screenshot:

The Transfer State option will pass the current selections from this QlikView
document to the document being opened. This is based on field name and the
values. This is why it is important to use conformed dimensions because they
ensure that both the field names and field values are the same between all the
documents that are sharing those dimensions.

Summary
This chapter has had a lot of really important information. We started by reviewing
what you should already know about associating data. You learned important
information about keys and autonumbering and the level of calculations used in
QlikView. We also reviewed the different methods of stitching data together—join,
concatenate, and mapping.

Chapter 2

[133]

We then moved on to talk about dimensional data modeling, fact and dimension
tables, and best practices from Ralph Kimball. You learned how to handle SCDs
and multiple fact tables and how to drill across tables.

The previous chapter dealt with loading data for performance. The next chapter
will help us continue our learning of how best to load data, building QVD layers,
to support a dimensional modeling approach.

Best Practices for
Loading Data

"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."

— Sherlock Holmes (Arthur Conan Doyle), The Adventure of the Copper Beeches

In this chapter, beginners to QlikView development will be shown how to
connect to different data sources with the QlikView script, load tables of data,
transform that data, and create charts and other objects. However, in the real
world of QlikView application development, it will be very rare that you will
create an application that contains the whole process, from data source to final
visualizations, within one QlikView document.

Extract, transform, and load (ETL) is a standard process within data warehousing;
moving and transforming data from different data locations into the final
dimensional model tables.

In this chapter, we will be looking at creating best practice ETL techniques using
QlikView tools. Initially, we will look at how to do this using the QlikView script.
At the end of this chapter, we will look at using QlikView's graphical ETL tool—
Expressor—to provision data for QlikView.

These are the topics that will be covered in this chapter:

• Reviewing data load and storage concepts
• Understanding why to use an ETL approach
• Using an ETL approach to create QVD data layers

Best Practices for Loading Data

[136]

• Mastering loading techniques:
 ° Incremental load
 ° Partial load
 ° Binary load

• Using QlikView Expressor for ETL

Reviewing data loading concepts
There are a few things that we need to remind ourselves of before we can fully grasp
the concepts covered in this chapter.

Getting data from anywhere
QlikView is data-agnostic. It doesn't care where the data comes from, all QlikView
cares about is whether the data is numeric or alphanumeric, and if it is numeric, does
it have an alphanumeric representation that needs to be stored. Hence, for practical
discussion purposes, there are only two datatypes in QlikView—numeric and dual.

QlikView does actually recognize both integer and float values and
stores them accordingly, with floats taking up more storage bytes.
If the numeric values have a format, then they are stored as duals—
with the number and the formatted string stored together. The Floor
function will not only remove decimals from a number, leaving just
an integer, but it will also remove any formatting so it will reduce
the amount of space needed to store the values.

This is sometimes difficult for people coming from a database world, where there can
be great difficulty in moving data from one place to another. Database ETL designers
will have to worry about whether the source data is one length of string versus the
target. In QlikView, we need not worry; it is just going to be text.

There are sometimes issues due to this, such as when there is an ambiguity about what
the data is, but it does save a lot of time. This is especially true when we need to bring
data together from multiple data sources. We may have sales information coming from
an ERP system, user information coming from an HR system, and customer contact
information coming from a CRM system. Then, add to that budget information from
Excel. Because we don't care about the strict datatypes, QlikView can handle all of this
data easily. We can start building our applications and delivering results very quickly.

Chapter 3

[137]

One of the reasons that QlikView can be better than traditional reporting solutions is
that QlikView takes a snapshot of the data into the memory and users will query that
snapshot. This takes a load off the core systems because the users' queries are not
continually running against a production database. However, to make this an even
better situation, we need to make sure that QlikView plays nicely with the database
and we are not attempting to load 20 million transaction records every 30 minutes.
That is behavior that makes us very unpopular with DBAs very quickly.

The data-from-anywhere ability of QlikView is also a great advantage over many
other systems, where you might be limited to only connecting to one data source
at a time and are forced to write ETL to move other data sources into the common
source. Some other systems have the ability to combine data from multiple
sources, but often not in such a straightforward way. One of the reasons ETL has
developed as a software category is the ability to report on data from multiple
sources. Companies had no option but to move the data into a central warehouse
where reports could be run. There are, of course, some very good techniques and
practices that have come out of ETL processing that we can apply to QlikView
implementations—techniques that will save us from the wrath of the DBA!

Loading data from QlikView
One technique that is often quickly forgotten by QlikView developers, if they ever
knew about it in the first place, is the BINARY load. This statement will load all of
the data of a QlikView file (.qvw) into another—the data tables, symbol tables,
and so forth. Once they have been loaded into the new file, you can use it as is,
add additional data, remove and reload tables, or perform any other processing
that you want.

Because you are loading another file's data tables, symbol tables, and other tables
into a new file, there is one restriction in that the BINARY statement must be the
very first statement in the script, as shown in the following screenshot:

Best Practices for Loading Data

[138]

Using this technique, you might have a chain of binary loading documents, each
one loading from the one before, but then adding some new data or even removing
rows or whole tables, to make it more unique. Another use case is to have completely
different documents from a frontend visualization point of view, with different
audiences, that share the same data model—one document can load the data while
the other documents simply binary load from the original.

Loading similar files with concatenation
We already talked about automatic and manual concatenation in the Joining data
section Chapter 2, QlikView Data Modeling. We will recall that if two tables with
the same number of identically named fields are loaded, then QlikView will
automatically concatenate those tables.

If we load data from file-based sources using wildcards in the filenames, QlikView
will attempt to load each of the matching files. As long as the files contain the same
set of fields, the rows in each file will be automatically concatenated, for example:

Load Field1, Field2, Field3
From File*.txt (txt, utf8, embedded labels, delimiter is ',',
 msq);

As long as every file that matches the wildcard File*.txt contains the three fields
listed, they will all be concatenated.

The wildcards available are the standard Windows
ones—* to represent zero or many characters and ?
to represent just one character.

Loading dissimilar files with Concatenate and
For Each
So, if similar files can be loaded using a simple wildcard, what if there are differences,
perhaps even just a field or two, but you would still like to concatenate the fields? This
might be a common use case if you are loading files that have been generated over
time but have had new fields added to them during that period. The older files won't
have the fields, so rather than try and retro-fit those files, we can handle them like this:

// Assign a variable with blank text
Set vConcatenateOrders='';
FOR Each vFilename in FileList('c:\Data\Filter*.txt')
 Orders:

Chapter 3

[139]

 $(vConcatenateOrders)
 LOAD *
 FROM
 $(vFilename)
 (txt, utf8, embedded labels, delimiter is ',', msq);
 // Update the variable with a concatenate statement
 Set vConcatenateOrders='Concatenate (Orders)';

Next

The For Each statement combined with the FileList function will loop through
all of the values that are returned by the file specification. The full absolute path (for
example, C:\Data\OrderExport2.csv) will be assigned to the vFilename variable.

There is also a function called DirList that will return a
list of folders. Both FileList and DirList will return
their values in dictionary order.

Understanding QlikView Data files
A QlikView Data (QVD) file is a file format that QlikView uses to store a table of
data to disk. Only one table can be stored in each QVD file.

A QVD contains three parts:

• An XML header, which describes the data contained in the QVD. This XML
file also contains useful information about the date and time that the QVD was
created, the name of the document that created the QVD file, the name of the
table in QlikView, and lineage information about where the data originated
from—which database queries or table files made up the table in QlikView
before the data was stored to QVD.

• The symbol tables for each field in the data in a byte-stuffed format. Byte
stuffing helps remove potentially illegal characters from the data. Although
this can increase the size of the stored data over the original data, it is usually
not significant for symbol tables.

• A bit-stuffed data table is a table of index pointers that points to the symbol
table values (as we discussed in Chapter 1, Performance Tuning and Scalability).

So, basically the QVD file is an on-disk representation of how that data is stored
in memory. For this reason, loading data from a QVD file back into memory is very
fast. In fact, if you do no transformation to the data in the load script, then the load is
essentially straight from disk into memory. This is the fastest way of getting a single
table of data into QlikView.

Best Practices for Loading Data

[140]

Even if you need to transform the data, or use where clauses, the data load is still very
fast—as fast as from any other table files. There are a couple of operations that can be
performed on a QVD that do not interfere with the fastest, most optimized load:

• Rename fields using As
• A Where clause using a single Exists

Storing tables to QVD
When we have loaded data into a table, we can store that table to an external file using
the Store command. The basic syntax of the command is like this:

Store TableName into path_to_file (format);

This is the syntax that would be used 99 times out of 100. There is a slightly more
advanced syntax, where we can specify the fields to be stored:

Store Field1, Field2, Field3 from TableName into path_to_file (format)

The path will be any valid absolute, relative, or UNC path to the file that you wish to
create. The format is one of three values:

Format Description
qvd This creates a file of type QVD as described previously.
txt This creates a comma-separated Unicode text file.
qvx An XML-based table format that QlikView can read. Because this

is an open format, it is often used by third-party organizations to
export data to be loaded into QlikView.

If the format is omitted, qvd will be used. Because of that, you will usually see Store
statements without the format specified. A best practice would be to always include
the format, even if it is QVD.

Some examples of valid Store statements are:

Store Sales into D:\QlikView\QVD\Sales.qvd;
Store OrderID, OrderDate, CustomerID, ProductID, SalesValue
From Sales into ..\QVD\Sales.qvd (qvd);
Store Customer into \\qvserver\data\Customer.qvx (qvx);
Store Product into ..\csv\Product.csv (txt);

Chapter 3

[141]

Using QVD files
One of the things that new developers often ask about QVDs is, "why?". They wonder
why they need to use QVDs. They know that they can connect to a database and read
data and they feel that they can do that again and again and don't see any reason why
they need to bother writing the data to a QVD file first. There are, however, several
very good reasons to store data in QVDs:

• Speeding up loads by storing data that doesn't change, or doesn't change
very frequently. Loading data from a database is relatively much slower
than loading data from a local QVD. For example, if you have 2-year-old
transactions, that won't change; you could have those in QVDs, and then
load newer transactions from the database and concatenate the two sets of
data. Of course, this also reduces the load on the database server because
we are only looking for relatively few rows of data on each SQL call.

• Combining data from multiple different sources. For example, we could have
a new ERP system in place but we also want to add in sales information from
an old system. If we keep the old data in QVD, we don't need to have the old
database online, so it can be decommissioned.

• Incremental load is the ultimate use of QVDs to load transactional information
in the minimum amount of time possible. Basically, we load only the newest
data from the database, combine with the older data from locally stored QVDs,
and then update the QVDs.

There is an excellent section on this in both the QlikView
Reference Manual and in the QlikView Help file—search for
Using QVD Files for Incremental Load. We will
run through an example of this later in this chapter.

• As discussed in Chapter 2, QlikView Data Modeling, dimensional modeling
approaches say that we should use conformed dimensions where dimensions
are shared across different models. This is an excellent use of QVDs—we
create the QVD once and then can share it across many QlikView documents.
Even if we are not following a strict dimensional modeling approach, we can
still use QVDs to reuse data in more than one application.

• Implementing data quality when preparing data for users. A cleaned set of
QVD files, that are centrally created and controlled, can be provisioned for
users with confidence that data is correct.

Best Practices for Loading Data

[142]

Just from a development point of view, you will find that you are performing reloads
again and again as you are perfecting your data model. If you are reloading from a
slow database connection, this can be painful. If you create local QVDs, then your
development efforts will proceed a lot faster.

Understanding why you should use an
ETL approach
Hopefully, from the preceding section, you might start to see why the majority
of expert QlikView developers use some kind of an ETL approach to data loading
using QVDs.

There are several advantages to using an ETL approach to just load all the data directly
from data sources, such as:

• Speeding up overall data loading and reducing of load on database servers
by archiving data to QVD

• Reusing extracted data in multiple documents
• Applying common business rules across multiple documents: one version of

the truth
• Creating conformed dimensions across multiple business processes,

supporting a dimensional modeling approach
• Provisioning a data layer that allows QlikView users to self-serve, without it

being necessary to have database skills

Speeding up overall data loading
As mentioned in the previous section, it doesn't make sense to constantly load data
from a database that doesn't change. It makes much more sense for the data that
doesn't change to be stored locally in QVD files, and then we only need to go to the
database server for the data that has changed since the last time that we queried for it.

This approach makes your network engineers and DBAs very happy because the
database isn't over-taxed and the amount of network traffic is reduced.

As data volumes increase, it often becomes critical to make sure that reloads are as
short as possible so as to fit inside a reload window. By having as much of the data
as possible stored locally on the QlikView server in QVD files, we can make sure
that we have the shortest reload times possible.

Chapter 3

[143]

Reusing extracted data in multiple documents
It is not uncommon for the same data table to be used in many places. For example,
you may have a staff list that is extracted from an HR system but is used right across
all areas of the business. You may also have a global calendar table, which will be
used by almost every application, which can be loaded from the finance system.

By extracting the data once into QVD, you are, again, reducing network traffic
and database load. If this data is not updated on a very frequent basis, it is also not
necessary to re-extract that from the database frequently during the day to feed into a
more real-time application. A table like the calendar might only be refreshed monthly.

Real time means different things to different people, but I
would define it as the periodicity of the reload that gives the
business the information that it needs to make decisions now.
For some businesses that demand a refresh every minute,
for others, once a week will do.

Applying common business rules across
multiple documents
From a one version of the truth point of view, it is critical that measures are
calculated the same way across all documents that use them. If two people
use different calculations for, say, margin, then they will get different answers
and drive, potentially, different actions.

By using an ETL approach, the same calculation can be used to feed the same
measure to multiple fact tables, which helps ensure that the same result is
obtained across the business.

Creating conformed dimensions
Conformed dimensions are a fundamental of dimensional modeling. What this
means is that we create one dimensional table to represent the same entity across
the entire business.

For example, we sell a product to customers, our sales people visit prospects, and
we order from suppliers. All of these are examples of organizations. By creating
a single organization dimension that can be shared across multiple dimensional
models, we can gain insight that would otherwise be difficult to achieve.

Best Practices for Loading Data

[144]

In the Kimball dimensional modeling approach, there is a technique called the
Enterprise Data Warehouse Bus Architecture that helps you identify dimensions
that will be shared across multiple models. For more information, see The Data
Warehouse Toolkit by Ralph Kimball and Margy Ross or their website:

http://www.kimballgroup.com/data-warehouse-business-intelligence-
resources/kimball-techniques/kimball-data-warehouse-bus-architecture/

Provisioning a self-service data layer
By adopting an ETL approach, we can make our fact table and dimension table QVDs
available for users to load into QlikView to create their own analyses, without having
to have any database expertise or database connection credentials.

In fact, you can create a QlikView application that will create a script that will read
the appropriate QVDs for a process into a new QlikView application, which means
your power users do not even have to have any QlikView scripting knowledge.

Using an ETL approach to create QVD
data layers
We now know that there are very good reasons for adopting an ETL approach
to loading data in QlikView. Now we need to learn how we should go about
implementing the approach.

Each part—Extract, Transform, and Load—has its own set of recommendations
because each part has a very different function.

http://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/kimball-data-warehouse-bus-architecture/
http://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/kimball-data-warehouse-bus-architecture/

Chapter 3

[145]

Essentially, the approach looks like this:

Databases, CRM

ERP, EDW

Excel, CSV

Sources Extract QVD Transformed QVD Final Apps

Potential Self-Service Layer

Conformed

Dimensions

Facts

QVWs

The approach can be explained as follows:

1. Extract the data from data sources into QVDs.
2. Transform the data from the initial QVDs into transformed fact tables

and conformed dimensions.
3. Load the transformed QVDs into the final applications.

The final two layers, the transformed QVDs and the final applications, become
potential sources for a user's self-service. We can have confidence that users who
load data from these layers will be getting access to clean, governed data.

Best Practices for Loading Data

[146]

Creating a StoreAndDrop subroutine
When we are loading data to create QVDs, we will end up calling the Store
statement quite frequently. Also, we tend to drop tables once we have stored them
as we don't need that data in the QVW file that has created them. So, we will also
call the Drop statement quite often.

Anytime that we do something quite frequently in the script, it is a good idea to
put that into a subroutine that we can call. Here is an example of a script that will
perform the Store and the Drop operations:

Sub StoreAndDrop(vTableName, vPrefix, vQVDFolder)
 Store [$(vTableName)] into
 [$(vQVDFolder)\$(vPrefix)$(vTableName).qvd];
 Drop Table [$(vTableName)];
End Sub

The subroutine gets passed the name of the table that we want to store, a prefix
that we might want to add to the QVD files, and a folder that we want to put the
files in—again, this is absolute, relative, or UNC.

Here are some examples of calling this subroutine:

Call StoreAndDrop('Table1', 'E_', 'C:\Temp');
Call StoreAndDrop('Table2', 'EX_', '.\');

This is an example of a function that you might want to have in an external text file
that can be included in all of your scripts, the advantage being that we can have a
central place for the maintenance and support of functions.

To include an external file, you would have a statement like this (this one can be
created by using the menu in the script editor—Insert | Include Statement):

$(Include=..\scripts\storeanddrop.qvs);

Now, there is a slight problem with this directive in that if the file doesn't exist
or there is some other problem reading the file, QlikView will then just ignore
the directive (silent fail). Therefore, we should probably think about modifying
the statement to read as follows:

$(Must_Include=..\scripts\storeanddrop.qvs);

This will throw an error in the script if there is a problem reading the file—which
we probably want to have happen. The script failure will throw an error on the
desktop or cause an automated task to fail on the server—unless we are handling
the error using the ErrorMode and ScriptError variables.

Chapter 3

[147]

Extracting data
The goal of extracting data is to connect to our database or other sources, and move
the required data from source to QVD as quickly as possible. To this end, we will do
basically no transformation of the data at all.

Creating an extractor folder structure
To keep things well organized, we should adopt a practice of keeping to a folder
structure for our extraction files and the QVDs that they generate.

Within our Extractors folder, there should be a subfolder for each data source.
For example, we will have a subfolder for our Sales Database and HR System.
We might also have a subfolder for a set of budget files that are stored in Excel
somewhere. We will very often have a Shared subfolder that will contain useful
scripts and QVDs that will be shared across multiple sources. For example, we
might store our StoreAndDrop script in the Shared subfolder structure. Our folder
structure may look like the following screenshot:

It is worth noting that if there was only going to be one budget
Excel file and it is related to sales, it is perfectly correct to do
the practical thing and handle it alongside the other sales data
instead of creating a separate set of folders.
Unless an Excel file requires a load process such as CrossTable,
I probably wouldn't create a QVD from it at all. The overhead
counteracts any benefits.

Best Practices for Loading Data

[148]

Within each subfolder, there will be three new subfolders:

Subfolder Purpose
Includes This folder will hold include text files containing a QlikView

script. A common use of such files is to store connection strings
or variable declarations that might be shared across multiple
files. By keeping such information in a separate include file,
we can quickly change values without having to edit multiple
QVWs.

QScript This folder will hold either QVW files that will be executed by
a server/publisher reload task or text files (usually with a QVS
extension) containing a script that we will run via a publisher
task. In either case, the purpose of the script will be to connect
to the data sources, load the data, and store the data into
QVD files.

QVD The destination folder for the data generated by the scripts.

Differentiating types of scripts
While all extractor scripts will connect to a data source, load the data, then store to
QVD, there are some logical differences based on the way that they will operate and
the frequency that they will be executed. The following table describes this:

Script type Description
Low frequency The data that is being loaded does not change frequently

or at all. Therefore, there is little point in refreshing the
QVD on a very frequent (for example, daily) basis. A good
example of this might be a calendar table, which we can
use to calculate many years into the past and many years
into the future. Another example may be a department
structure that doesn't really change very frequently. We
can refresh the QVD every so often, automatically or
manually, but not frequently. The complexity of the script
is irrelevant because it runs so infrequently.

Simple, high
frequency

Common for dimensional data, we will connect to the data
source, load the data, and store straight to QVD with little
or no additional calculation. We will do this frequently
because we need to make sure that any changes in such
data are reflected in the models. However, the size of these
dimension tables (relatively small compared to the fact
tables) means that loading the entire table every time is
not unfeasible.

Chapter 3

[149]

Script type Description
Complex, high
frequency

Usually applied to fact tables where loading the entire
table every time is unfeasible, we need to apply additional
logic so as to only load from the database those records
that we need to get now. We will then combine those
records with records that we already have in a QVD so as
to create the final extract QVD.

It is important to analyze your loads for these characteristics because you need to
appropriately combine or split scripts based on when you should be performing
reloads. It is pointless, for example, to include a low frequency script along with a
high frequency script in the one script module. Also, it would be good practice to
have your simple scripts in a separate module to your complex scripts.

In an environment where there are data batch jobs running—for example, data
warehouse ETL processes or financial account processing—we are often limited
in our Qlik reloads to a certain time window. In those circumstances, we need to
be even more certain that we are not loading unnecessary data.

Executing the extractors
Execution of the extractors should be very straightforward. Each of the scripts will
connect to the data source, load the data, and write the data to a QVD in the QVD
folder. At the end of execution, you should have an up-to-date set of QVDs for that
data source, ready for transformations.

As a best practice, it is a good idea to also adopt a naming convention for the
QVD files that are produced. It can be a good idea to prefix the files with a letter
or abbreviation—such as E_ or EX_—so as to quickly distinguish an extractor QVD
from any other. Including the table name in the filename is mandatory. Adding the
data source or abbreviation would also be a good step, for example:

E_SalesData_Customer.qvd

Transforming data
The transformation step is where all the magic happens. We will take QVD data (and
possibly simple Excel data) and transform that data into conformed dimensions and
fact tables.

Best Practices for Loading Data

[150]

Creating a transformer and model folder structure
When transforming, we are going to make use of two folder structures. One will
hold the transformation scripts and include files that will actually perform the
transformations. The other folder structure will hold the QVDs that are output
from those transformations. The reason we split into Transformers and Models
is that, in theory, we should only have one transformer that creates a QVD, such
as a conformed dimension, but that QVD may need to be written out to more than
one Model subfolder.

The subfolders under Transformers and Models should be based on the modeling
that you have performed in advance—either process or line-of-business based.
Have a look at the following screenshot:

It is worth remembering that when we are using a structured folder
arrangement like this, then we should use relative paths in our script
so that we can move files from development servers, where we will
have established identical paths, to test or production servers without
having to change the script.

Executing transformers
The only rule that we can specify about execution of transformers is that they need
to be appropriately scheduled after the extractors that create the QVDs that the
transformers depend on. Other than that, we will be applying different business
rules to that data and those rules are context-specific.

Chapter 3

[151]

This is a good point to add a reminder that when creating surrogate
keys using the AutoNumber function, the keys generated can only be
relied upon within the same script. We can't create surrogate keys in
a QVD in one script and expect them to match surrogate keys created
in a different script, even if the original keys were identical. We can,
however, use a function such as Hash256 to create consistent surrogate
keys between different loads, remembering to apply AutoNumber on
them when loading data into the final application.

It is a good practice to apply a naming convention to the files that are generated
in the Models folders. A common convention is to apply a prefix of FACT_ to a fact
table and DIM_ to a dimension table. A source name would not be appropriate here
as there may be multiple sources, so just the prefix plus the table name will suffice,
for example:

FACT_Sales.qvd;
DIM_Organization.qvd;
DIM_Calendar.qvd;

For operational reasons, you may wish to partition your fact tables, so a partition
indicator would be appropriate:

FACT_Sales_2012.qvd;
FACT_Sales_2013.qvd;
FACT_Sales_2014.qvd;

Loading data
If the transformation step has been carried out correctly, there should be very little to
do in the UserApp folder other than to load the QVDs.

Creating a UserApp folder structure
As with the other operations, it is a best practice to create a UserApp folder structure
with a subfolder structure that represents either the business process or line-of-business
for the apps within it.

This whole UserApp folder can be mounted on a QlikView server, or each subfolder
could be mounted separately.

Best Practices for Loading Data

[152]

Executing the load step
The load step could be as simple as the following:

LOAD * FROM ..\Models\Campaign Management\FACT_Sales.qvd (QVD);
LOAD * FROM ..\Models\Campaign Management\DIM_Organization.qvd (QVD);
LOAD * FROM ..\Models\Campaign Management\DIM_Calendar.qvd (QVD);

If the transformation step has been correctly implemented, then the tables should
load (optimized load) and all the tables should be associated correctly with no
synthetic keys.

The one allowable transformation (which does cause an unoptimized load) that
might be performed in this step is the use of the AutoNumber function to generate
surrogate keys. Using it at this stage will ensure that the generated keys will
associate correctly as they are all being generated within the same script.

Mastering loading techniques
There are a few techniques for data loading that you need to spend some time
learning to be a true master of the subject. We will have a look at some examples
of them in this section.

It has already been mentioned that there is an excellent article on incremental load
in both the help file and the reference manual. We will work through some examples
here to help give you a good grounding in the subject. We will also look at a couple
of other load techniques that will be very useful in your arsenal—binary load and
partial load.

Loading data incrementally
The basic process of an incremental load is to have most of the data stored in QVDs
on the server and then connect to the database to just obtain those records that are
needed to update the QVDs to be concurrent.

Thinking about this, there must be a few pieces that are needed before we can
implement the strategy:

• There will need to be an initial load of the data. This may be a complete load
of the data table into one QVD or it may be a partitioned load of the data in
several QVD files based on, most likely, a date field.

Chapter 3

[153]

• We will need to be able to establish which field in the data identifies new or
updated records. If the data is transactional, with only new rows being ever
added, a sequential ID field will work for this purpose. A create date can also
be used. However, if the data might be modified, we will need to have a date
field that stores the modified date and time.

• We need to have a primary key for the data stored. We can use this value in an
Exists clause or we can use it with joins to the source data to handle deletions.

• We will need to establish a way of storing the last time that we ran the
extraction process. I like to use a variable for this as their values will persist
with a given QVW file. However, we can also add some resilience by storing
the value to a QVD.

Note that because we are using QVD files to persist data, it is a
good idea to ensure that those QVD files are backed up on a regular
basis. Although they can, in theory, be recreated from the original
data source, it may be a lot quicker to just restore the files from an
archive. In the case where the original data is no longer available,
backup becomes even more critical.

Establishing the script for the basic process
The script for the basic process will be as follows:

1. Establish the date and time that the extraction was last run:
// When was the last load?

// Do we have a value in our variable?
If Len('$(vLastExtractionDate)')=0 Then

 // Do we have a QVD with the date?
 Let vFileLen=FileSize('..\QVD\Sales.Transactions.
LastQVDExtractionDate.qvd');
 if Len('$(vFileLen)')=0 Then
 // Set the last extraction date to an arbitrary date.
 // For example, the first day of this year
 Let vLastExtractionDate=
 TimeStamp(YearStart(Today()), 'YYYYMMDD HH:mm:ss');
 Else
 LastExtraction:
 Load
 LastExtractionDate
 From

Best Practices for Loading Data

[154]

 [..\QVD\Sales.Transactions.LastQVDExtractionDate.qvd] (QVD);

 Let vLastExtractionDate=Peek('LastExtractionDate');

 Drop Table LastExtraction;

 // It is possible that there was no date in the file
 if Len('$(vLastExtractionDate)')=0 Then
 Let vLastExtractionDate=YearStart(Today());
 End if
 End if

End if

2. Record the current date and time:
// Record the current date and time
Let vCurrentExtractionDate=TimeStamp(Now(), 'YYYYMMDD HH:mm:ss');

3. Extract the records from the database where the modified date lies between
the two dates:
// Load the modified records
Orders:
LOAD OrderID,
 OrderDate,
 CustomerID,
 EmployeeID,
 Freight;
SQL SELECT *
FROM QVTraining.dbo.OrderHeader
Where OrderDate >= '$(vLastExtractionDate)'
and OrderDate < '$(vCurrentExtractionDate)';

4. Concatenate data from the stored QVD—if it exists—where we have not
already loaded that row:
// Concatenate QVD data - if it exists
Let vFileLen=FileSize('..\QVD\E_Sales.Transactions.qvd');
// Note that if the file doesn't exists, vFileLen will be blank
If Len('$(vFileLen)')>0 Then

 Concatenate (Orders)
 Load *
 From

Chapter 3

[155]

 [..\QVD\Sales.Transactions.LastQVDExtractionDate.qvd] (QVD)
 Where Not Exists(OrderID);

End if

5. Store the entire table back to the QVD:
// Store the data back to the QVD
Store Orders into [..\QVD\E_Sales.Transactions.qvd] (QVD);

Drop Table Orders;

6. Update the date and time for the last extraction:
// Update the Last Extract date
Let vLastExtractionDate=vCurrentExtractionDate;

// Persist the value to QVD
LastExtraction:
Load
 '$(vLastExtractionDate)' As LastExtractionDate
AutoGenerate(1);

Store LastExtraction into [..\QVD\Sales.Transactions.
LastQVDExtractionDate.qvd] (QVD);

Drop Table LastExtraction;

Running an incremental load when data is
only added
In many transactional systems, rows are only allowed to be added to the system.
This is true for many bookkeeping systems. If you make a mistake, you are not
allowed to edit or delete the row: you need to add a new transaction to correct
the error.

In that case, our basic process is actually too complex. It will work perfectly as it is,
but we can modify it to remove the Not Exists clause when loading the QVD. In
theory, the QVD should never contain records that we have loaded within the date
range. However, in the real world, it is always better to leave the check in place—
Exists does not impact an optimized load from the QVD.

Best Practices for Loading Data

[156]

Loading incrementally when data might be modified
Other systems allow users to make adjustments directly to the transactional data.
If they do, they will usually (although not universally!) have a field that contains
the timestamp for when the modification was made.

In this case, our basic script should work perfectly. You just need to modify the
extraction query and make sure that you include a where clause on the field that
contains the modified date.

Handling deletions from the source system
It could be possible that the system that you are reading data from may allow
transaction rows to be deleted. The problem for us is that we may have one of the
deleted rows already stored in our QVD and we will get no indication (because
there can be no modified date on a deleted row!) that the row is gone.

In that situation, we will add an Inner Join load of the primary key value from the
data source, just after we have concatenated the rows from the QVD to the modified
rows, but just before we store the data to QVD. The Inner Join load will remove
any rows from the in-memory table that do not exist in the data source. We can then
store the table to file and the deleted rows will no longer exist, for example:

// Check for deleted records
Inner Join (Orders)
SQL SELECT OrderID
FROM QVTraining.dbo.OrderHeader
Where OrderDate >= '20140101';

Note that there is a date on this. We are assuming here that previous years' data is
stored in separate QVD files, so we would not be modifying this.

Handling situations where there is no modify date
Handling situations when there is no modify date present is tricky and you will need
to utilize the assistance of the local DBA or application developer. Often the system
will keep a log of changes and you may be able to query this log to obtain a list of the
primary keys for the records that have changed in the period since the last extraction.

If there is no such set of records, you may be able to get the DBA or developer to create
a database trigger that creates a separate record in a table when a row is inserted or
modified. You can then query this table to obtain your list of primary keys.

Whatever the situation, there is often some kind of solution available.

Chapter 3

[157]

Partially reloading only one part of the
data model
Partial reload in QlikView is a very useful feature. It allows us to either completely
replace a whole table in the data model or add new rows to a table, without modifying
the data in any of the other tables. This can be used to really speed up data loads for
more real-time applications.

A partial reload can be executed from the File menu in QlikView desktop, or by
selecting the Partial checkbox when configuring the reload schedule in QlikView
Server or publisher. When the partial reload is executed, it will completely ignore
tables that are loaded normally and will not modify them in any way. However,
tables that have a load statement prefixed with the Replace or Add keyword will
be modified. During a normal reload, these keywords are ignored.

Mapping tables will have been removed from the original data
after the load, so if we are going to use them in the partial load,
we will also need to reload them with the Replace keyword.

Replacing a table
To completely replace a whole table, we put the Replace keyword before the load
statement for that table, for example:

Orders:
Replace
Load *
From [..\QVD\Orders.qvd] (QVD);

In this case, we assume that the QVD has already been updated (perhaps using the
incremental load process) and we need to replace the whole table.

Adding new rows to a table
We can also add new rows to a table without having to remove the table. By placing
the Add keyword before the load statement, we can leave what we have already
loaded and then just add new rows. This can be an effective method of running
incremental loads:

Orders:
Add
LOAD OrderID,
 OrderDate,

Best Practices for Loading Data

[158]

 CustomerID,
 EmployeeID,
 Freight;
SQL SELECT *
FROM QVTraining.dbo.OrderHeader
Where OrderDate>'$(vLastReloadTime)';
// Update the last reload time
Let vLastReloadTime=Timestamp(Now(), 'YYYYMMDD HH:mm:ss');

Managing script execution in partial reloads
In the last example, the final step was to update a variable. We may notice, however,
that there was no option to say whether this should happen if the load is a partial
load or a normal reload. All such assignments will happen either way. We can,
however, manage this process by using the IsPartialReload function, which
returns true or false, depending on the reload type:

If IsPartialReload() Then
 // Do partial reload stuff
Else
 // Do normal reload stuff
End if

Loading the content of another QVW
We can extract the entire contents of one QVW into another using a process called
Binary load. The Binary statement takes the path to a QlikView QVW file and loads
all of the data tables, symbol tables, and so forth into the loading document.

Because this process essentially creates a new data model in the loading document,
there is a rule about Binary, in that it must be the very first statement executed in
the script. Also, we can have only one Binary statement in any one application.

Once the Binary load has completed, you can then add additional script to do
whatever you need to do. For example, you may wish to add a new table. Another
thing that you may want to do is extract tables from the original data into QVD files.
You may also want to drop tables.

One use case that I have for this is for the creation of several documents that have
an identical data model but will have different UIs. You may want to give a more
structured UI with locked down ability to add new objects, or export data, to one
set of users, while giving a different UI with full collaboration and export to another
set of users.

Chapter 3

[159]

Henric Cronström from Qlik has written an excellent blog post on how the cache
in QlikView Server works that indicates that because the QlikView Server cache
is global, there are actually cache efficiencies that mean that this approach is not
necessarily a bad thing for your server:

http://community.qlik.com/blogs/qlikviewdesignblog/2014/04/14/the-
qlikview-cache

Using QlikView Expressor for ETL
In June 2012, Qlik announced the purchase of Expressor Software. The press release
talked about a metadata intelligence solution for data lineage and data governance,
but what exactly is this product?

There are a couple of parts to the technology that are interesting. The main business
of Expressor Software was the creation of an ETL tool that could connect to multiple
different data sources, read data, and write it out to different locations. As part of
this, they happened to create connectors that could connect to QlikView files—QVW,
QVD, and QVX—and read both data and metadata from those files. They also
created connectors to write out data in QVX format. Obviously, they felt that the
QlikView market was worth going after.

Almost as a side effect, they were able to create the genesis of what is today the
QlikView Governance Dashboard. Using their technology, they were able to connect
to QlikView files and read enough metadata to create a full governance solution
about a QlikView implementation. This was actually a big deal because governance
was something that Qlik was getting beaten about with by competitors. Now there
was an effective solution—Qlik liked it so much, they bought the company.

Introducing Expressor
Expressor is actually formed of three major components:

• Studio: This is the desktop tool used to build the ETL packages.
• Data integration engine: This is a GUI-free service that actually runs the

packages, either on demand or on a schedule (it is a special version of this
engine that is used by the Governance Dashboard).

• Repository: This is a source repository based on the subversion versioning
and revision control system. This allows multiple developers to work on
the same project.

http://community.qlik.com/blogs/qlikviewdesignblog/2014/04/14/the-qlikview-cache
http://community.qlik.com/blogs/qlikviewdesignblog/2014/04/14/the-qlikview-cache

Best Practices for Loading Data

[160]

As an ETL tool, Expressor Studio is quite intuitive for those who have experience
with other ETL tools. It has some differences but many similarities.

Most ETL tools will have some kind of scripting/development language to enable
the building of business rules to be applied to data during the transformation stage.
With Expressor, that language is Lua:

http://www.lua.org

One thing that Expressor has, that makes it different, is its ability to partition data
on the fly during data loads and make the data loading process multithreaded.
Most Qlik developers will be familiar with data being loaded and processed one
row at a time. Expressor will intelligently partition the entire load into separate
sets of rows and then load each of these partitions simultaneously. This can make
a huge impact on data load times, significantly reducing them.

Understanding why to use Expressor for ETL
Why, when QlikView and Qlik Sense already have a rich and powerful scripted
ETL ability (as we have seen already), would we consider using Expressor instead?

The very simple answer is, control. By using Expressor or any other ETL tool
to create the QVD or QVX data model layer, we are taking control of the data
provisioning and centrally controlling it. Policies and security are put in place
to make sure that QlikView users, no matter what ability, cannot get enterprise
data other than via the QlikView data layer.

This could be seen as a downside by QlikView developers, who may be anxious
to get applications built and deployed. However, granting such access to the
enterprise data systems is not seen as a good practice in data governance. We
extract the data, apply common business rules, and deploy the QlikView data
layer from a central tool.

We can still, probably, make the argument that the data layer could still be provisioned
using QlikView. However, there are still very good reasons to use Expressor instead:

• It isn't QlikView: The people who will be responsible for provisioning the
data layer may not be QlikView developers. If they are experienced database
developers, then they will be much more comfortable with Expressor than
with QlikView scripts.

• Speed: The ability to automatically partition data loads and run multithreaded
data loads make Expressor extremely quick for getting data.

• Repository: This helps in allowing multiple users to work on the same projects
and gives versioning control to projects.

http://www.lua.org

Chapter 3

[161]

When reading on further, it will be useful to have a copy of
Expressor installed on your workstation. The installation is
very straightforward and the application will run, without
license, on Windows 7 and 8 desktops.

Understanding workspaces, libraries,
projects, and artifacts
Within QlikView Expressor, we will partition our own work into different
organization units to better manage what we are doing. The terminology is
very different from QlikView, so we need to understand that now.

Creating a workspace
A workspace is a collection of related projects. As with most things in this regard,
there are no hard-and-fast rules about how many workspaces you need to create.
Some organizations may have one. Others have one for every project. The norm
is somewhere in between the two. We will probably have a workspace for related
areas of ETL—perhaps by line-of-business or by data source.

There are two types of workspaces—standalone and repository. A standalone
workspace will be stored locally on the developer's workstation. The repository
workstation is stored in the Expressor repository. A standalone workspace can
be converted to a repository workspace.

When we first open QlikView Expressor, we are presented with some options
for workspaces:

Best Practices for Loading Data

[162]

When we select the New Workspace… option, we are presented with the
following screen:

We can pick that our new workspace is either Standalone Workspace or Repository
Workspace. If we select Standalone Workspace, we can specify the path to where
the workspace will be stored. If we select Repository Workspace, we will give the
connection information to where the repository is stored.

The repository is an Expressor implementation of the Subversion versioning system.
This will be available with an Expressor server and is useful for multideveloper
environments.

Anyone who has used Subversion may note that the default port that
Expressor uses is 53690, whereas the default Subversion port is 3690.
Note that you should not update the version of svn that Expressor uses
to the latest version available as you will probably break the repository.

Managing extensions
In QlikView Expressor, extensions are code libraries that allow Expressor to read
and write to different file types and databases. There are some extensions that are
installed out-of-box (such as the QlikView Extension), but we need to make sure
that they are enabled. We need to access the Manage Extensions… option from
the Desktop menu:

Chapter 3

[163]

When we select the menu option, the Manage Extensions dialog opens:

Within this window, we can use the Current Workspace Settings tab to enable or
disable extensions. We can use the Installs tab to install a new extension or uninstall
an existing one.

Best Practices for Loading Data

[164]

Working with libraries and projects
Basically, a library and a project are the same thing. Both of them are storage locations
for other objects, such as data flows, connection information, and so forth. The only
difference is that a library cannot contain a deployment package—only a project can
produce one of these packages for the integration engine.

A library is used to hold objects, or artifacts as they are called in Expressor, which will
be shared among other projects.

To add a new project or library, you can select the Project or Library buttons on the
ribbon bar or you can right-click on the workspace name:

To add either, we just need fill in a name and description in the dialog and click on
the Create button:

Chapter 3

[165]

Note that the name of the project, as with all other artifacts,
cannot have spaces in it. It can only consist of letters, numbers,
and the underscore symbol. It must begin with a letter.

Understanding artifacts
When we create the project, we will see several folders—one for each of the types of
artifact that may make up our project:

The different artifacts are as follows:

Artifact Description
Dataflows A Dataflow artifact is the actual flow of data, in one or more

steps, that is the actual ETL process. They are defined via a
drag-and-drop visual interface.

Connections The Connections artifacts tell Expressor how to connect
to the data. We can have file connections—basically a
path to a folder, database connections, or QVX connector
connections—a connection to a package that will generate a
QVX.

Schemas Schemas map the source or target data to the datatypes
that are understood by Expressor. They may encapsulate
transformations.

Types The Types artifact will contain semantic type information
about data. We have two types of semantic type, atomic—
mapping data type and constraints for one piece of data, and
composite—essentially mapping an entity of atomic types.

Best Practices for Loading Data

[166]

Artifact Description
Datascript Modules The artifacts will contain Lua functions that can be called from

transformation scripts or can be used to implement a custom
data read.

Lookup Tables Not dissimilar to mapping tables in QlikView, these are
locally stored tables that we can use to map values as part of a
transformation.

Configurations Configurations can contain multiple parameters that we
can then use throughout the other artifacts. A large number
of the settings can be parameterized. By having multiple
configurations, it allows us to set up things such as Dev/
Test/UAT/Production without having to reconfigure every
artifact.

Deployment
Packages

Packages are compiled dataflows, along with their associated
artifacts, that will be executed by the integration engine—
either scheduled or on demand.

Operator Templates Within a dataflow, we can configure Read, Write, and
Transformation operators. Once configured, we can save
that operator as a template to be reused.

External Files These are basically any type of file that might be used by data
scripts.

Library References When we add a reference to a library, all that library's artifacts
will become available within the project as if they were part of
the project.

Configuring connections
Before we can read or write data with QlikView Expressor, we need to configure
a connection. We have a choice of three different connections. To add a connection,
we can either right-click on the Connections folder under the project or we can
click on the Connection button in the ribbon bar:

Chapter 3

[167]

Here is a description of the different connection types:

Connection Description
File The File connection allows us to connect to a folder on the

filesystem—either a local folder or a server share. We can use this
folder to both read and write data. Typically though, read will be
from one connection and write will be to another.

Database The Database connection allows us to connect to different
databases using an ODBC driver. Drivers are supplied for some
of the more common databases and you can use an existing DSN
for others. The connection can be read and/or write. As with the
File connection, the typical implementation will have different
connections for read and for write, or you will read from a database
connection and write to a file connection.

QVX Connector The QVX connection allows us to use the installed QlikView
Expressor connector—the same one that you can use from within
QlikView—to execute an existing package and read the QVX data.
This is a read-only connection.

Configuring a File connection
Configuring a File connection is quite straightforward. We just need to know the
path to the folder:

After clicking on the Next button, we can enter a name (remember, no spaces) for the
connection and a description:

Best Practices for Loading Data

[168]

We continue adding File connections for every folder that we are going to read from
or write to.

If we are going to have many projects reading from or writing to the same set of
folders, the connections should be configured in a library.

Connecting to a database
The connection to a database is fairly straightforward. Expressor comes with drivers
installed for the following:

• Apache Hive
• Cloudera Impala
• IMB DB2
• Microsoft SQL Server
• MySQL Enterprise Edition
• Oracle Database
• PostgreSQL
• Sybase ASE
• Teradata

In addition, Expressor will natively support (can use its own property dialogs
to configure the connection) the following drivers if they are installed from the
vendor websites:

• Informix
• MySQL Community Edition
• Netezza

Finally, Expressor will also support other ODBC drivers, but a DSN will need to be
configured outside of Expressor.

Chapter 3

[169]

To add the database connection, we first need to select the correct driver to use:

We then fill in the database specific connection information (Expressor will test the
connection before allowing you to continue) and then give the connection a name.

Creating a QVX Connector Connection
The QVX Connector Connection uses the same connector that we would use in
QlikView to connect to an on-demand package. The only packages that can be
used are those that will generate a QVX output.

There is a slightly different approach here in that we name the connection before
we enter the connection details:

Best Practices for Loading Data

[170]

When we click on the Create button, Expressor will go ahead and save the connection
and open the properties for us to edit.

We select the QlikViewExpressorConnector.exe option as the connector to use
(you may also see the governance connector in the list, if you have the Governance
Dashboard installed on the same machine). Click on the Actions button and select
Build Connection String:

The following instructions are seen in the dialog box:

Chapter 3

[171]

The instructions are as follows:

1. Add folders containing Deployment Packages: Click on the Add Folder
button and browse for a folder that contains a workspace (the default folder
for workspaces is c:\users\username\documents\expressor\Workspaces)
and select a Project folder that contains a package (the dialog won't let you
select a folder unless there is a package in it).

2. Then select a Dataflow with a QlikView output:

Configuring types and schemas
As we just mentioned, we have two kinds of types, Atomic and Composite.

Adding additional Atomic types
At its simplest, an Atomic type is simply a basic type such as string, date, number,
and so forth. We can extend these basic types by adding constraints, such as length
or value, to those basic types—implementing business rules.

We add a new Atomic type by right-clicking on the Types folder under the project
and/or by clicking on Type in the ribbon bar:

Best Practices for Loading Data

[172]

We can now give a name to our Atomic type and Expressor will open the properties
page for us to enter basic type and constraint information:

Depending on the base datatype, we can set different levels of constraint. If the
constraint rule fails, we can set different corrective actions to be performed. The
default is that the type should Escalate the breach of the constraint, which would
normally throw an error in the dataflow.

Once we have set our constraints, we can save the Atomic type.

Creating Composite types
A Composite type is a collection of types that we can map our data onto. So, for
example, we can create an order Composite type that represents exactly how
we think an order should look. When we import external data, we can map that
external data to our Composite type. By mapping everything to a Composite type,
which can also encapsulate data constraints, we ensure consistency.

We create a Composite type by right-clicking on the Types folder under the project
or by clicking on Type on the ribbon bar, as with the Atomic type. We name the
artifact as usual and Expressor will open the properties window:

Chapter 3

[173]

We can click on the Add button to add a new Atomic type to our Composite type:

Best Practices for Loading Data

[174]

For each attribute, we can assign a datatype and any constraints. We can also assign
a Semantic Type (Atomic type) that we have previously configured (Shared) or
create a new Atomic type (New (local) that will be added to the current project):

If we do assign a Semantic Type to the field, the constraint options will become
grayed out because the constraints will be inherited from the Atomic type.

Configuring a schema
A schema represents the data that is being read or being written. We can have
different types of schema for different types of data. For example, text data
is handled differently than database data, which is handled differently from
QlikView data. A schema can be configured from either the data itself—which
is the usual way—or from a Composite type that we have already configured.

To configure a schema, we can either right-click the Schemas folder under the
project or click on the Schema button in the ribbon bar:

Chapter 3

[175]

A wizard will open that will allow us to configure the schema from the data. For
file sources, we can either browse to the file or we can just paste some sample rows
(browsing for the file will just load the first 10 rows):

Best Practices for Loading Data

[176]

We then specify the Field Delimiter value and the Record Delimiter value, any
quote information, and the Encoding type. When we click on Next, the dialog will
preview the data and show us the column headings. We can use the first row of
the data for column headings by clicking on the Set All Names from Selected
Row button:

After clicking on Next again, we can give a name to the schema (usual artifact name
rules apply) and click on Finish to save the schema. Once we have saved the schema,
we need to edit the details—we right-click on it and select Open:

Chapter 3

[177]

We note that the schema has been assigned a generated Composite type
(CompositeType1) and that the input fields are mapped to it. However, we want to
assign our Composite type that we have already configured.

On clicking the Actions button to the right-hand side of CompositeType1, we
can select to add a Shared type. When we select our Composite type, we will be
prompted to generate a new mapping:

We would normally choose Yes to allow the system to make the mappings for us:

Best Practices for Loading Data

[178]

We do need to tweak a couple of the mappings. If you click on the link from
OrderDate to OrderDate and then click on the pencil icon above it (or just double-click
on the link), we can enter the correct format string for Expressor to interpret the text:

In this case, the data is in UK date format, so we need to specify DD/MM/CCYY, where
D represents day, M represents month, C represents century, and Y represents year.

We should also edit the mapping for the sales price field because there is a dollar
symbol. Expressor allows us to take care of that:

Chapter 3

[179]

We can now select the CompositeType1 type from the drop-down menu and use the
Actions button to delete it. Hit the Save button to save the schema.

This schema that we have just created can be used to either read or write text files.
In fact, it is a good idea to design your schemas based on the required output rather
than the inputs.

Creating and packaging a basic dataflow
Now that we have configured connections, types, and schemas, we can create a
simple dataflow to move data from a text object into a QVX file for consumption
by QlikView.

Understanding the dataflow toolbox
When creating a dataflow, we have a toolbox available of different operators that
we can use within the dataflow. There are four categories:

• Inputs
• Outputs
• Transformers
• Utility

Inputs
The Inputs toolbox contains eight options (depending on what extensions you have
turned on), each used to read data:

Best Practices for Loading Data

[180]

This table describes each of the read operators:

Operator Description
Read File The Read File operator will connect to a file using one of

the file connections and one of the schemas that we have
built

Read Table The Read Table operator will connect to a table using a
database connection and read the data

SQL Query The SQL Query operator will execute a query that has been
defined in a schema against a database connection

Read Custom Read Custom allows you to run a data script to read and
generate data that can be passed to another operator—this
is an extremely powerful option

Read Lookup Table This operator reads a lookup table that has been populated
by another dataflow step

Read Excel This is part of the Excel extension that allow us to read data
from Excel files

Read QlikView This QlikView operator is part of the QlikView extension
and can read from QVW, QVD, and QVX

Read QVX Connector The Read QVX Connector operator can read data from a
QVX connector

Outputs
The Outputs toolbox contains nine operators (depending on what extensions you
have turned on), each used to write data in different ways:

Chapter 3

[181]

This table describes each of the write operators:

Operator Description
Write File The Write File operator will write data to a text file in a folder

specified by a file connection.
Write Table Write Table uses a database connection to write a database

table. We can specify that a table should be created in the
database if it does not exist.

Write Teradata PT This allows you to write data to Teradata using Parallel
Transporter. Note that you will need to download additional
client libraries—TTU v13.10 or later.

Write Custom Write Custom allows you to write data out using a data script.
This is a powerful feature.

Write Lookup Table This is used to populate an Expressor lookup table—not unlike
a QlikView mapping table.

Write Parameters This allows us to generate a parameters file that can be used
to pass parameters to other options in the dataflow.

Trash This is an interesting option—Trash takes an input and does
nothing with it, it is as if you had thrown it away. It can be
useful during development and troubleshooting.

Write Excel This uses the Excel extension to create Excel output.
Write QlikView This uses the QlikView extension to generate QVX output.

Transformers
Transformers are operators that allow us to transform data. As such, they will form
a central part of almost any dataflow. There are six operators available:

Best Practices for Loading Data

[182]

This table describes each of the transformer operators:

Operator Description
Aggregate This operator allows you to perform grouping and

aggregation on data
Join The Join operator allows us to join—inner, left, right,

and outer—data tables together
Transform This is the core transformation operator, where we

perform many of the applications of business rules
Multi-Transform The multi operator will allow multiple transformations

to be performed and up to nine different output streams
Pivot Row This is similar to the CrossTable function in QlikView

that takes data in columns and generates a new row for
each column

Pivot Column The Pivot Column operator is the opposite of Pivot
Row—it takes multiple rows and creates one row with
multiple columns

Utility
The Utility operators contain several operators that operate on data in ways that are
not transformative, but are useful in an ETL system. There are six operators available:

This table describes each of the utility operators:

Operator Description
Buffer This is a useful operator where there may be issues with the timing

of arrival of records to a multi-input operator (such as a Join). It will
temporarily buffer data to disk until the next operator is ready to
process it.

Copy The Copy operator will take one input stream and allow us to split
that into up to 10 output streams, each containing the same data.

Chapter 3

[183]

Operator Description
Filter The Filter operator allows us to create rules to filter data into

multiple different output streams.
Sort The Sort operator does what we expect: it sorts the data. We can

assign a certain amount of memory for the operator to use as well
as disk storage if it needs it.

Funnel Funnel is similar to QlikView's Concatenate but more like SQL
Union—it accepts multiple input streams and returns the union
in one output stream.

Unique The Unique operator will return one row for multiple values of
a key field.

Creating the dataflow
We add a new dataflow in a similar manner to other artifacts—right-click or use the
ribbon. When the dataflow is first added, a blank workspace appears:

Best Practices for Loading Data

[184]

To the left-hand side, we have the operator panel. We can click-and-drag any
operator from the panel onto the dataflow workspace:

On the right-hand side is a properties panel that allows us to set the properties for
the currently selected object.

Configuring a Read File operator
After we have dragged an operator such as Read File onto the dataflow, we need to
modify its properties:

Chapter 3

[185]

The properties that you need to fill out are as follows:

Property Description
Name Free text name that we want to apply to the operator.
Connection The file connection from which you want to read the file.

All available connections will be in the dropdown.
Schema The name of the schema that you will use.
Type The Composite type that the schema will map to.
Mapping The mapping set that will be used.
File name The name of the file.
Quotes Choose May have quotes or No quotes—depending on

whether the file will have quotes or not.
Skip rows If your text file has a header row, you will want to set this

to 1.
Error handling Either abort the dataflow, skip the record, reject the

record, skip remaining records, or reject the remaining.
Rejected records are put out the rejected records stream.

Show errors Set whether the errors are shown or not.

Adding a Transformation operation
If we drag a Transformation operator from the Transformation panel onto the
dataflow, we can then click on the output of the Read File operator and drag the
mouse to the input of the Transformation operator:

The Read File operator should now change to green because it is complete and
doesn't need us to do anything else. If it doesn't, we need to look at the messages
panel to find out what we have forgotten!

Best Practices for Loading Data

[186]

If we click on the Edit Rules button on the Transformation operator's properties panel
(or double-click on the Transformation operator), then the edit rules dialog opens:

The list of fields on the left-hand side is the list from the incoming stream. The list
on the right-hand side is the list of fields that will be output. With nothing else
changed, we see that the lists match. Every input field will be output. The white
arrow to the left of each output field indicates that they are being output because
they are input fields.

We can block an input field from being output by selecting that field in the left-hand
side list and clicking on the Block Inputs button on the ribbon bar. If we do that for
the LineValue field, the lists will look like this:

Chapter 3

[187]

If we want to actually output a field that contains the line value, we can calculate
it from the Quantity and SalesPrice fields. We need to first click on the Add
button on the ribbon bar to add a new attribute to the Outputs list—for example,
LineSalesAmount.

We then click on the New Rule button on the ribbon bar and select Expression
Rule. We drag Quantity and SalesPrice onto the Add Input side of the rule and we
drag our new LineSalesAmount field onto the Add Output side of the rule. In the
expression area, we can replace nil with Input.Quantity*Input.SalesPrice:

Creating a QVX output
Once we have configured the Transformation operator, we can now drag a Write
QlikView operator from the Outputs panel to dataflow and connect the output of
the Transformation operator to the input of the Write QlikView operator.

QVX is an open format to allow any developer to extract data into a
file or data stream that QlikView and Qlik Sense can read. Like QVD
files, QVX files only contain one table of data. At time of writing, the
only Qlik format that Expressor can write is QVX.

Best Practices for Loading Data

[188]

We then set the properties of the output. Now, we haven't defined a schema for the
output file, but Expressor has a nice facility where it can generate a new schema from
the output of the previous operator. Clicking on the Actions button to the right-hand
side of the Schema dropdown gives us a menu where we can select this option.

Once all the operators have been configured, they should all turn green. Now we can
save it and test it. If all goes well, we should have a QVX file in the output folder.

Packaging the dataflow
Now that we have a working dataflow, we can package it up.

We simply add a new deployment package to the project and we can drag our
dataflow into the Compiled Dataflows section.

That's it! The package can now be used in Expressor connectors and also with the
integration engine on a schedule.

Summary
This chapter has been a very important one from a data loading point of view. As a
QlikView developer, you should now have a great understanding of QVDs and why
and how we should use them to implement an ETL approach. The folder structure
model here will support an implementation from small business to enterprise.

We also looked at implementing really important techniques such as incremental
load and partial load.

Chapter 3

[189]

Finally, we had an introduction to Qlik's ETL tool, QlikView Expressor,
and understand why it might be implemented instead of the QVD approach.
There is a lot more to learn about Expressor and hopefully this introduction
will spur you on to learn more about the product.

In the next chapter, we will learn about best practices around data governance
in QlikView. We will also see more about Expressor's technology when we look
in detail at the Governance Dashboard.

Data Governance
"The most valuable commodity I know of is information."

 — Gordon Gekko, Wall Street

Do you know how many QlikView applications are being used in your organization?
Do you know who is using these applications? Do you know where all the data comes
from for those applications? How are people calculating different metrics?

The answer to all of these questions might actually be, "Yes, yes I do." If so, it may be
that you already have a data governance strategy in place or you just might not need
one. If everything is tightly controlled within a small group of QlikView developers,
perhaps a QlikView Center of Excellence, then you probably have a good grip on
this. However, if your organization is less structured than that and you have many
QlikView developers spread around, all creating their own applications, then you
will need to think about answering these questions.

Data governance starts at the top of the organization. Without serious management
buy-in to the process, most efforts at data governance will inevitably fail. Whatever
team is assigned to the task of creating a data governance plan will have to take many
facets into consideration, and the implementation of Qlik is just one of these.

The first part of establishing a good data governance plan for Qlik is to develop a good
ETL process (see Chapter 3, Best Practices for Loading Data) to ensure that developers
have a set of well-formed dimensional models (see Chapter 2, QlikView Data Modeling)
to use. You should ensure that you understand these concepts. Of course, another part
of establishing good data governance is to ensure that developers are using such data
sources, and this is something that we will look at in this chapter.

After reviewing some basic concepts that you should be aware of, we will look at
how developers can establish metadata in their QlikView applications that can help
users to know which fields they are using when they create their own charts.

Data Governance

[192]

We will go on to discuss the concept of data lineage and how this applies in QlikView,
especially in the Governance Dashboard. This is QlikView's free tool that utilizes the
Expressor technology to scan your applications and source files to tell you where the
information comes from. The Dashboard also scans the QlikView server logs to tell us
exactly what users are doing with our applications.

We should be aware that in some countries, the monitoring
of employee behavior might be subject to legal restriction or
subject to industrial relation agreements.

The following are the topics we'll cover in this chapter:

• Reviewing basic concepts of data governance
• Establishing descriptive metadata
• Understanding lineage information in QlikView
• Deploying the QlikView Governance Dashboard

Reviewing basic concepts of data
governance
We already should know enough, technically, to handle all of the QlikView elements
in this chapter. Therefore, the only element that I want to review is the whole concept
of metadata.

Understanding what metadata is
So, what exactly is metadata and how does it apply to QlikView?

The prefix meta means several things, depending on how it is used. In the area of
Epistemology, the study of knowledge, meta simply means about. So, metadata is
information about data: where the data has come from, who owns the data, who
produced the data, when the data was produced, what format the data is in, and
so forth.

One piece of data can have quite a lot of metadata. Traditionally, metadata has been
broken down into two types: structural and descriptive. A third type, administrative,
is critical for correct data governance.

Each of these types can be broken down into many more subtypes, but we really
need to be careful about how far we go with the process. We want to create some
metadata, but we don't want to spend 2 years creating it. QlikView does a lot to
help us here, but we will have to do some work.

Chapter 4

[193]

Structural metadata
Structural metadata gives us information about how the data hangs together.
At a simple level, the table viewer in QlikView is structural metadata. We can
get additional information from the Tables tab in Document Properties, and
we can export this information to tab delimited text files:

As QlikView developers and designers, this information is very important to us.
We need to know how the data model is built and how everything hangs together
to be able to build the most effective QlikView applications.

Other important structural information is where the data comes from and what are
the data sources, files, and so forth that make up the data. Knowing this data lineage
information allows us to make decisions on the impact any changes to these sources
might have. We can also analyze to see where data sources are shared among multiple
applications so that we can make decisions about the reuse of data via QVD. Knowing
which files are in use also allows us to work out which files are not in use and either
clean up the file structure or ask questions about why these files aren't in use.

Data Governance

[194]

Descriptive metadata
Descriptive metadata is any additional data that we add to our applications to give
more information and context about the application and the individual elements of
the data.

This information is very useful to application designers and business users who need
to know more about what they are using. It is also useful to add commentary about
what we are doing so that we can review and recall at a later date.

This information can be added in multiple places in QlikView, and we will review
this in the Establishing descriptive metadata section.

Administrative metadata
Administrative metadata is, as it sounds, information of interest to system
administrators and managers—information about where applications reside, who
can access an application, who is actually using them, and what they are being used
for. All of this data is available from QlikView logs and system information, but it
is not always easy to collate. Obviously, a QlikView application that can collate this
information for us will be very useful.

Establishing descriptive metadata
Structural and administrative metadata can all be derived from the system. The only
area where we can add value, and it can be a lot of value, is with descriptive metadata.
In this section, we are going to look at the following areas:

• Adding document-level information
• Renaming fields
• Tagging fields
• Adding field comments
• Renaming, tagging, and commenting fields in script
• Commenting in charts
• Extracting metadata

Chapter 4

[195]

Adding document-level information
Document-level information gives users information about the application, for
example, what its purpose is, who created it, and anything that would be useful
for users to know about.

We can add this information in two places: Document Properties and via Qlik
Management Console.

Documents without any additional metadata
If a document has no metadata added, a user will see this in AccessPoint:

When a user opens that application, the tab that they see in their browser will just
have the name of the QVW file:

Later, we will see that adding some descriptive metadata will give more information
to the users.

Data Governance

[196]

Document Properties
Within the General tab in the Document Properties window, there are two
information boxes that can be populated:

If you populate the Title box, then this will immediately replace the full path that is
displayed in the QlikView desktop window caption. It will also be displayed in the
browser tab, which is friendlier for users:

The author's name will not be displayed to users, but does give information to
developers who might have to maintain this application later.

Management Console
Within the QMC, we can add additional information for users via the User Documents
tab under Documents:

Chapter 4

[197]

You can also specify this data using a QlikView Publisher task that will update it on
the server.

Once we have specified this information, it will appear in AccessPoint:

Data Governance

[198]

Users can now also choose to search applications in AccessPoint using the attributes
that have been specified:

Naming and renaming fields
Naming and renaming fields may seem a very simple thing to do, but it is the
easiest way to help users understand the content of any field in a dataset and
is the easiest and most straightforward descriptive metadata used to enable the
fields to describe themselves.

As an example, consider the SAP ERP system. In SAP, many of the field names are
5-letter abbreviations of German words. For example, the customer number field is
called KUNNR. Even in German, this is not easy for business users to understand
the content just by looking at the field name.

We know that we should rename this field to make it more understandable, but
what name should we call it? Cust_No., Customer#? These are common names
that developers might use but again, they are abbreviations that are not so easy
for business users to understand easily. In QlikView, there is no reason why this
field should not be renamed Customer Number.

We should always rename our fields to make them understandable. Abbreviations
should be avoided, unless they are so well known that there is no question of
anything being misunderstood. Renaming fields can be handled in several ways,
so we need to pick the way that is the easiest to implement for us as developers
and most maintainable for the business.

Chapter 4

[199]

Guidelines to rename fields
We don't need to be too prescriptive here but it is important to have some kind
of naming guidelines for fields that all developers in an organization will use.
By being consistent, we make it easier for our users to find what they are looking
for and understand what they are looking at. Of course, it can be useful for
developers too.

We have the following three types of fields that we need to consider for naming:

• Dimensions
• Key fields
• Measures

Dimensions
Probably the most common field type in our dataset, dimensions, shouldn't need to
be specially identified to users but they should be named using descriptive language,
including spaces and punctuation where appropriate.

Key fields
We should pick a character, or a set of characters, to prefix all of our key fields.
This is a good discipline to have for the following reasons:

• It identifies the fields as key fields very quickly
• It differentiates them from dimension fields
• Fields are grouped together alphabetically
• A field that we have tagged as a key field but is not used as a key field can

be spotted quickly
• A field that we have not tagged as a key field but is used as a key field can

also be spotted
• Such fields can be automatically hidden from users

A good choice for this purpose is often the % character. QlikView allows it as the first
character of a field name and it will not be commonly used for any other fields.

Typically, as these fields are not meant to be quickly identifiable to business users,
key fields will not include spaces and appropriate punctuation. Instead, proper case
might be used where there are multiple words.

Data Governance

[200]

We can hide fields that have a common first set of characters
from users by setting the HidePrefix variable, for example,
to %. We can also tag fields with the $hidden tag, and they
will also be hidden from users.

Measures
Many of the reasons to prefix key field names will also apply for measures.

A good choice for this purpose is the # character because it is not commonly used
for other fields and it often symbolizes numbers to people.

Although not critical, it can often be a good idea to use
underscores instead of spaces and not use punctuation in
measure field names. This further differentiates them from
dimensions and can make them a little easier to handle in
expressions (because we won't need to use square brackets).

Renaming fields using As
Renaming fields using As is something that we should already know about; it is
something that we will probably have used in every script that we have written.
We know that we can simply rename a field in the load script by adding the As
keyword followed by the new field name:

Load
 Field1 As %NewFieldName1,
 Field2 As #New_Field_Name_2,
 Field3 As [New Field Name 3],
 Field4 As "New Field Name 4",

We know that if we want to add spaces into the new field name, we must enclose
the new name in either square brackets or double quotes. Square brackets are often
preferred as they do not confuse with text qualifiers.

Using Qualify
Qualify is used to automatically rename all of the fields in a table by prefixing the
fields with the name of the table and a period (.).This can help a lot where there are
very many similarly named fields in several tables that cause invalid associations
and synthetic keys.

Chapter 4

[201]

For example, suppose that we have a table like the following:

TABLE1:
Load
 KeyField,
 DimField1,
 DimField2,
 DimField3,
 Measure1,
 Measure2
From DataTable.qvd (qvd);

We can add a Qualify statement at any time before the load statement in the
following manner:

QUALIFY *;

TABLE1:
Load
 KeyField,
 DimField1,
 DimField2,
 DimField3,
 Measure1,
 Measure2
From DataTable.qvd (qvd);

This will result in an in-memory table like the following:

The * symbol here is interesting because this is actually a field list, but is using
a wildcard. Instead of the * symbol, we can issue a Qualify statement in the
following manner:

QUALIFY DimField1, DimField2, DimField3;

Data Governance

[202]

This will result in a table like the following:

We can see that only the fields in this list are now qualified.

Normally, the list of fields that we want to qualify, which contains most of the fields in
a table, is much longer than the list of fields that we might not want qualified, which
has just the key fields. So, instead of identifying these fields that we want to have
qualified in the list (which would be very long), we will issue the full query Qualify
* but then add another statement with an UnQualify statement to tell QlikView which
fields to not add the table name to. This works something like the following:

QUALIFY *;
UNQUALIFY KeyField;

TABLE1:
Load
 KeyField,
 DimField1,
 DimField2,
 DimField3,
 Measure1,
 Measure2
From DataTable.qvd (qvd);

The preceding code will result in a table like the following:

Chapter 4

[203]

Of course, in normal practice, we will rename our fields and prefix key fields with %.
This means that we can issue an UnQualify statement with a wildcard so as to stop
qualifying key fields automatically. This is shown in the following example:

QUALIFY *;
UNQUALIFY [%*];

TABLE1:
Load
 KeyField as %Table1Key,
 DimField1 as [Dim Field 1],
 DimField2 as [Dim Field 2],
 DimField3 as [Dim Field 3],
 Measure1 as #Measure1,
 Measure2 as #Measure2
From DataTable.qvd (qvd);

Another thing that we should consider is that it is not just field names that should
be changed when we use Qualify; we should also consider whether table names
should be renamed to be friendlier to business users.

As a final note on Qualify, many developers will avoid it because they do not
like the field names that are created, which can cause other problems in the script.
One place that even these developers will like to use it is where there are several
well-known fields that recur in every table that you have in your dataset. By adding
a Qualify statement with just these fields, we can avoid the invalid associations
that might be caused when loading these tables, for example:

QUALIFY CreateUser, CreateDate, ModifyUser, ModifyDate, Version;

Renaming fields using Rename
Instead of renaming fields while being loaded using the As keyword, we can also
rename fields after they have been loaded using the Rename function.

The statement takes the following form:

Rename OldFieldName to NewFieldName;

So, if we take the example of the simple table previously discussed, we can rename
the fields in the following manner:

TABLE1:
Load
 KeyField,

Data Governance

[204]

 DimField1,
 DimField2,
 DimField3,
 Measure1,
 Measure2
From DataTable.qvd (qvd);
RENAME Field KeyField to %KeyField;
RENAME Field Measure1 to #Measure1;
RENAME Field DimField1 to [Dim Field 1];

We can also rename a table using the following statement:

RENAME Table TABLE1 to Table1;

Using a mapping table to rename fields
One of the features that was added a couple of versions ago was the ability to rename
fields using a mapping table along with the Rename function.

We know that a mapping table, usually used with ApplyMap, is a table that has the
following features:

• It has only two fields, a lookup field and a return field
• The names of the fields are not important, only the order is
• It is loaded with the Mapping keyword

The typical use of a mapping table is that the first field will be some kind of numeric ID
and the second field is a text value that will be returned by the mapping. In the case of
a mapping table to be used with Rename, the first column will have the old field name
and the second column will have the new field name. The syntax is as follows:

Rename Fields Using MappingTableName;

So again, let's use the previous table:

TABLE1:
Load
 KeyField,
 DimField1,
 DimField2,
 DimField3,
 Measure1,
 Measure2
From DataTable.qvd (qvd);

Chapter 4

[205]

Rename_Map:
Mapping
Load * Inline [
old_name, new_name
KeyField, %KeyField
DimField1, Dim Field 1
DimField2, Dim Field 2
DimField3, Dim Field 3
Measure1, #Measure1
Measure2, #Measure2
];

RENAME Fields using Rename_Map;

The advantage of this method is that we, as developers, can load field names in
whatever way we want but then create a data source, perhaps in Excel, to allow
a business user to name the fields as they want.

Tagging fields
Another way of delivering information to users about fields is with the use of tags.
Tags are textual information, usually of a single word, that can help users discover
further information about a particular field. In fact, QlikView will already tag fields
with additional metadata when these fields are loaded.

Users can see these tags in the Fields tab of the sheet properties by hovering over a
field name:

Data Governance

[206]

Tags can also be seen in the Table Viewer window as well as in the Tables tab of
Document Properties:

There are a number of tags that will be added by the system that we can't change.
Others are added that we can change. We can also add our own tags that are
not system tags. System tags are identified by a $ symbol at the beginning of
the tag name.

The system tags that you can't change are as follows:

Tag Description
$system This indicates a system field such as $Field, $Table, and $Info
$key This identifies that the field is an associative key field
$keypart This indicates that the field is part of a synthetic key
$synthetic This identifies that the field is a synthetic key

The other system fields that might be added automatically, but can be modified in
the script, are listed in the following table:

Tag Description
$hidden This indicates that the field is hidden by default
$numeric This indicates that all field values (excluding nulls) are numbers
$integer All of the non-null field values are integers; obviously, if a field has

this tag then it will have $numeric tag too

Chapter 4

[207]

Tag Description
$text This identifies that none of the field values are numbers
$ascii All of the field values will contain only the standard ASCII characters;

they are not Unicode
$date All of the values are dates or can be interpreted as dates (as with an

integer that might be a date)
$timestamp All of the values are timestamps or numeric values that could be a

timestamp

There are additional two system tags that we can either add via the script or
checkboxes in the Tables tab of Document Properties:

Tag Description
$dimension This identifies the field as a dimension. This means that the field will

automatically sort to the top in dimension lists in the client.
$measure This indicates that the field is a measure field. The field will be sorted

to the top in the Expression Editor field dropdown.

We can also add our own tags to a field. This metadata will both be available to a
user and can also be extracted into a tool such as the Governance Dashboard.

Using the Tag statement to tag a field
We can add either system tags or our own tags to a field using the Tag statement.
There are many reasons to add our own tags, not the least of which is to add
additional information to help users understand where the field has come from.
For example, we might rename a field for ease of use, but some users might like
to see the original database field name. By adding the original field name as a tag,
these users can see the information if they wish.

The syntax is very similar to the Rename statement (mentioned previously):

Tag FieldName with 'tagname';

Consider the following example:

Tag Year With '$dimension';
Tag Year With 'MyTag';
Tag LineValue With '$measure';

Data Governance

[208]

In this case, the hover-over on the Year field would look like the following:

There is also an Untag statement, with the same syntax, that will remove a tag from
a field.

Tagging fields using a mapping table
In a way similar to how we renamed fields using a mapping table, we can tag fields
using a mapping table.

We have to be aware that as with a typical mapping table, which will only map to
the first value found in the first field, if one field is listed multiple times in the tag
mapping table, then only the first of those entries will be added to the field's tags
from that mapping table. If we want to add multiple tags to a field, we will need
to use multiple mapping tables. Consider the following example:

TABLE1:
Load
 KeyField,
 DimField1,
 DimField2,
 DimField3,
 Measure1,
 Measure2
From DataTable.qvd (qvd);

Tag_Map:
Mapping
Load * Inline [
field_name, tag
DimField1, $dimension
DimField2, $dimension
Measure1, $measure

Chapter 4

[209]

Measure2, $measure
];

Tag_Map2:
Mapping
Load * Inline [
field_name, tag
KeyField, My Key Field
DimField1, Primary Dimension
DimField2, Secondary Dimension
Measure1, Primary Measure
Measure2, Secondary Measure
];

TAG Fields using Tag_Map;
TAG Fields using Tag_Map2;

When we hover over one of the fields, we can see that the tags have been added.

Hiding fields
Hiding fields is a common operation in QlikView. It is useful to have some fields
automatically hidden from users. Fields such as association key fields are not usually
necessary for users to want to use as dimensions or measures. Also, we can mark a
field as hidden, and if it is in a listbox or other sheet object and a selection is made
on that field, the selection does not appear in Current Selections. This is useful for
some fields that we use for navigation rather than information.

Hiding fields automatically based on prefix or suffix
QlikView has two system variables that define a string of characters that will be
compared to fields' beginning characters or end characters. If there is a match, the
field will be tagged as hidden. These variables are HidePrefix and HideSuffix.

Data Governance

[210]

We set these variables in the script. For example, we might set one in the
following manner:

set HidePrefix='%' ;

Now, all fields that begin with this character (such as key fields) will now be hidden.

Using tagging to hide fields
Not all fields that we want to hide will always match to a particular name and we
might not want to name them to match, as that might cause confusion as to their
purpose. For example, if we have a field that is used in navigation, we don't want
to prefix it with % because it might be confused as a key field. Instead, we can simply
tag these fields with $hidden:

TAG Field NavigationField with '$hidden';

Adding field comments
Another way that QlikView allows us to communicate information about the
contents of a field to users is by adding text commentary to the field's metadata.
As with renaming and tagging, we have two methods of adding this information—
one field at a time, or via a mapping table:

COMMENT Field DimField1 With 'This field is the primary dimension of
the TABLE1 table.';

Comment_Map:
Mapping
Load * Inline [
field_name, comment
DimField2, This field is a secondary dimension in TABLE1
Measure1, This is the primary measure for TABLE1
Measure2, This is a secondary measure in TABLE1
];

COMMENT Fields Using Comment_Map;

Chapter 4

[211]

The commentary appears to the user when they hover over the field, appearing
above the tags:

Commentary and tag information is also visible when we hover over a field in
Table Viewer:

Renaming and commenting on tables
All of the tagging, commenting, and renaming commands that we have been
applying to fields can also be applied to tables. For example:

COMMENT Table TABLE1 With 'This is our main fact table.';

This comment is visible in the Tables tab of Document Properties as well as in
Table Viewer:

Data Governance

[212]

Commenting in charts
As well as adding metadata into fields and tables, we can also add commentary
to our dimensions and expressions in charts. There are two main reasons to add
commentary to what we are doing in QlikView:

• If someone else is supporting our work, they will be able to understand
what we were doing

• If we are supporting our own work, several months later, we will be able
to understand what we were doing

Commenting dimensions
Under most circumstances, commenting a dimension might not seem necessary,
especially if that dimension is well named. However, there are cases where it
is useful to add a comment, such as when we have a calculated dimension or
if the dimension label is calculated (such as with multilingual applications).
The Comment entry appears below the dimension label:

The Comment entry does have an ellipses button, so it opens Expression Editor.
However, we should use this only for access to more text lines rather than trying
to calculate anything as this calculation won't be seen anywhere.

Chapter 4

[213]

Entering an expression comment
Similar to a dimension, we can add an appropriate comment to each expression.
We should consider commenting almost every expression that we add, especially
if it is anything beyond a simple sum or count.

The Comment entry is shown below the Definition expression:

Automatically renaming qualified fields
If we adopt a Qualify approach to loading, especially when loading dimension
tables, we can still rename the fields afterwards (but before creating sheet objects!)
to make them friendlier.

We know that we can create a mapping table to rename our fields. This is something
that we will often ask the business users to create. We will provide a table (for
example, in Excel) with a list of qualified field names and then ask the business users
to create the friendly names. However, the users might not be as careful to not create
duplicates, or they might think that this is correct, but this can cause a problem for us.

What we need is a handy script that will handle several scenarios. First, we are going
to define a data table format to fill in the rename details:

Field Description
SOURCE QVD This is the name of the QVD that this field comes from

(the dimension table)
SOURCE TABLE This is the name of the table in the original source (lineage)
SOURCE FIELD This is the name of the field in the original source (lineage)
QLIKVIEW TABLE This is the name of the table in the current data structure
NEW TABLE NAME This gives a new name for the table (if we want to rename

the table)
QLIKVIEW FIELD This is the name of the field in the current data structure
NEW FIELD NAME This is the new name for the field
COMMENTS This helps add any comments to the field

Data Governance

[214]

Field Description
DIMENSION This is set to 1 to tag the field as a dimension
MEASURE This is set to 1 to tag the field as a measure

Our rename script will generally be the very last tab in the main script. First, we will
need to make sure that any qualification is turned off:

UNQUALIFY *;

Now, we load the main table:

Full_Map:
LOAD [SOURCE QVD],
 [SOURCE TABLE],
 [SOURCE FIELD],
 [QLIKVIEW TABLE],
 [NEW TABLE NAME],
 [QLIKVIEW FIELD],
 // If the new name already exists, qualify it
 trim(if(exists([NEW FIELD NAME]),[NEW TABLE NAME]&'.'&[NEW FIELD
NAME], [NEW FIELD NAME])) as [NEW FIELD NAME],
 COMMENTS,
 DIMENSION,
 MEASURE
FROM
RenameFields.xlsx
(ooxml, embedded labels, table is Mapping);

Now, load the field rename map from the main table:

FieldMap:
Mapping
Load distinct
 [QLIKVIEW FIELD],
 [NEW FIELD NAME]
Resident Full_Map;

Load the table rename map:

TableMap:
Mapping
Load Distinct
 [QLIKVIEW TABLE],
 [NEW TABLE NAME]
Resident Full_Map
Where Len([NEW TABLE NAME])>0;

Chapter 4

[215]

We load our first tag map, that is, the original table name:

tagmap:
Mapping
Load
 [NEW FIELD NAME] as TagFrom,
 'Original Table: ' & [SOURCE TABLE] as Tag
Resident Full_Map;

Our second tag map applies the original field name tagging:

tagmap2:
Mapping
Load
 [NEW FIELD NAME],
 'Original Field: ' & [SOURCE FIELD]
Resident Full_Map;

Then, a tag map for the QVD name:

tagmap3:
Mapping
Load
 [NEW FIELD NAME],
 'QVD file: ' & [SOURCE QVD]
Resident Full_Map;

Our next tag maps are for the dimension and measure tags:

DimMap:
Mapping
Load
 [NEW FIELD NAME], '$dimension'
Resident Full_Map
Where DIMENSION=1;

MeasureMap:
Mapping
Load
 [NEW FIELD NAME], '$measure'
Resident Full_Map
Where MEASURE=1;

Data Governance

[216]

The final tag map is for the comments:

commentmap:
Mapping
Load
 [NEW FIELD NAME],
 COMMENTS
Resident Full_Map
Where Len(COMMENTS)>0;

Now, apply all the maps:

Rename fields using FieldMap;
Tag fields using tagmap;
Tag fields using tagmap2;
Tag fields using tagmap3;
Comment fields using commentmap;
Tag Field Using DimMap;
Tag Field Using MeasureMap;
Rename Tables using TableMap;

Extracting metadata
There are a number of ways of extracting metadata from our QlikView applications,
and some are easier than others.

The Governance Dashboard (as explained later) extracts metadata and
imports log information into a good application to manage your data.
However, another tool that I really recommend to use to look at metadata
and the details of the document is Rob Wunderlich's Document Analyzer
(http://robwunderlich.com/downloads/).

Exporting the structure
Structure exporting is a facility that has existed in QlikView for many versions—we
can export the data structure information into tab-delimited text files.

In the Tables tab of Document Properties, there is an Export Structure button.

This will export three files—table information, a mapping table from tables to fields,
and field information:

http://robwunderlich.com/downloads/

Chapter 4

[217]

These tables can be read into another QlikView file for analysis.

Extracting from QVD files
A QVD has an XML header that we can easily read into a QlikView document. In the
table wizard, if we change the selector from QVD to Xml, we can get access to all of
the QVD metadata:

This information includes all of the field information, tags that have been added to
fields, and data lineage information.

Data Governance

[218]

Extracting from QVW files
Many developers do not realize that a QlikView document has an XML metadata
store embedded in it that we can actually read into QlikView. Again, it is picked
up by the table wizard:

This data includes all the document fields and table information with tags and groups,
expressions, variables, and lineage information.

Here is an example of loading this information for analysis; the vDocument variable
contains the path to a QVW file.

First, load the sheets and sheet object information:

GroupDescription:
LOAD Trim(Name) As GroupName,
 if(IsCyclic='false', 'Drill-down', 'Cyclic') As GroupType,
 %Key_GroupDescription_CB92F98E8506AF37 as %GroupId // Key for
this table: DocumentSummary/GroupDescription
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
GroupDescription]);

Chapter 4

[219]

Group_Map:
Mapping
Load
 GroupName,
 %GroupId
Resident GroupDescription;

GroupFields:
LOAD Name as GroupField,
 Type as GroupFieldType,
 %Key_GroupDescription_CB92F98E8506AF37 as %GroupId // Key to
parent table: DocumentSummary/GroupDescription
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
GroupDescription/FieldDefs/FieldDefEx]);

Sheet:
LOAD SheetId,
 Title,
 %Key_Sheet_A4D568A6CD8BD40A as %SheetID // Key for this table:
DocumentSummary/Sheet
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/Sheet]);

SheetChildObjects:
LOAD ObjectId%Table as ObjectId,
 %Key_Sheet_A4D568A6CD8BD40A as %SheetID // Key to parent table:
DocumentSummary/Sheet
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/Sheet/
ChildObjects/ObjectId]);

SheetObject:
LOAD ObjectId,
 SubField(ObjectId, '\', 2) As SimpleObjectId,
 Caption,
 Type,
 Field,
 Text
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
SheetObject]);

Expression:
LOAD ObjectId as SimpleObjectId,
 Definition as Expression
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
Expression]);

Data Governance

[220]

Dimension:
LOAD ObjectId as SimpleObjectId,
 PseudoDef as Dimension,
 ApplyMap('Group_Map', Trim(PseudoDef), Null()) As %GroupId
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/Dimension]);

// Variables
VariableDescription:
LOAD Name as VariableName,
 IsConfig,
 IsReserved,
 RawValue
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
VariableDescription]);

Now, load the table and field information:

GroupDescription:
LOAD Trim(Name) As GroupName,
 if(IsCyclic='false', 'Drill-down', 'Cyclic') As GroupType,
 %Key_GroupDescription_CB92F98E8506AF37 as %GroupId // Key for
this table: DocumentSummary/GroupDescription
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
GroupDescription]);

Group_Map:
Mapping
Load
 GroupName,
 %GroupId
Resident GroupDescription;

GroupFields:
LOAD Name as GroupField,
 Type as GroupFieldType,
 %Key_GroupDescription_CB92F98E8506AF37 as %GroupId // Key to
parent table: DocumentSummary/GroupDescription
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
GroupDescription/FieldDefs/FieldDefEx]);

Sheet:
LOAD SheetId,
 Title,
 %Key_Sheet_A4D568A6CD8BD40A as %SheetID // Key for this table:
DocumentSummary/Sheet
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/Sheet]);

Chapter 4

[221]

SheetChildObjects:
LOAD ObjectId%Table as ObjectId,
 %Key_Sheet_A4D568A6CD8BD40A as %SheetID // Key to parent table:
DocumentSummary/Sheet
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/Sheet/
ChildObjects/ObjectId]);

SheetObject:
LOAD ObjectId,
 SubField(ObjectId, '\', 2) As SimpleObjectId,
 Caption,
 Type,
 Field,
 Text
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
SheetObject]);

Expression:
LOAD ObjectId as SimpleObjectId,
 Definition as Expression
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
Expression]);

Dimension:
LOAD ObjectId as SimpleObjectId,
 PseudoDef as Dimension,
 ApplyMap('Group_Map', Trim(PseudoDef), Null()) As %GroupId
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/Dimension]);

// Variables
VariableDescription:
LOAD Name as VariableName,
 IsConfig,
 IsReserved,
 RawValue
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
VariableDescription]);

///$tab Tables and Fields
// Tables
TableDescription:
LOAD InternalNumber as Table.InternalNumber,
 Name as TableName,
 $(YesNoFlag(IsSystem)) As Table.IsSystem,

Data Governance

[222]

 $(YesNoFlag(IsSemantic)) As Table.IsSemantic,
 $(YesNoFlag(IsLoose)) As IsLoose,
 NoOfRows,
 NoOfFields,
 NoOfKeyFields,
 $(YesNoFlag(IsLinked)) As IsLinked
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
TableDescription]);

TableFields:
LOAD String%Table as TableName,
 %Key_FieldDescription_8942ED1DAD568474 as %FieldId // Key to
parent table: DocumentSummary/FieldDescription
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
FieldDescription/SrcTables/String]);

FieldAssociationCount_Map:
Mapping Load
 %FieldId,
 Count(TableName) as FieldCount
Resident
 TableFields
Group by %FieldId;

FieldDescription:
LOAD InternalNumber as Field.InternalNumber,
 Name as FieldName,
 $(YesNoFlag(IsSystem)) as Field.IsSystem,
 $(YesNoFlag(IsHidden)) As IsHidden,
 $(YesNoFlag(IsSemantic)) as Field.IsSemantic,
 $(YesNoFlag(DistinctOnly)) As DistinctOnly,
 Cardinal,
 TotalCount,
 PossibleCount_OBSOLETE,
 HasInfo_OBSOLETE,
 $(YesNoFlag(IsLocked)) As IsLocked,
 $(YesNoFlag(AlwaysOneSelected)) As AlwaysOneSelected,
 $(YesNoFlag(AndMode)) As AndMode,
 $(YesNoFlag(IsNumeric)) As IsNumeric,
 ApplyMap('FieldAssociationCount_Map', %Key_FieldDescription_8942ED
1DAD568474, 0) As Field.AssociationCount,
 If(ApplyMap('FieldAssociationCount_Map', %Key_FieldDescriptio
n_8942ED1DAD568474, 0)>1, Dual('Yes',-1), Dual('No',0)) As Field.
IsKeyField,

Chapter 4

[223]

 %Key_FieldDescription_8942ED1DAD568474 as %FieldId // Key for
this table: DocumentSummary/FieldDescription
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
FieldDescription]);

tmp_Tags:
LOAD String%Table,
 %Key_FieldDescription_8942ED1DAD568474 as %FieldId // Key to
parent table: DocumentSummary/FieldDescription
FROM [$(vDocument)] (XmlSimple, Table is [DocumentSummary/
FieldDescription/Tags/String]);

Left Join (FieldDescription)
LOAD
 %FieldId,
 Concat(String%Table, ', ') As Field.Tags
Resident tmp_Tags
Group by %FieldId;

Drop table tmp_Tags;

Finally, use the data loaded previously to establish whether a field is actually being
used in the document:

// Establish a list of field usage in different objects

// First, Group fields used in charts.
// Note that we don't just grab them from the GroupFields
// table because there may be groups that are not used.
FieldsUsedInObjects:
Load
 Distinct %GroupId
Resident
 Dimension;

Left Join
Load
 %GroupId,
 GroupField as UsedField
Resident
 GroupFields;

Drop Field %GroupId from FieldsUsedInObjects;

Data Governance

[224]

// Now add dimensions used in charts
Concatenate (FieldsUsedInObjects)
Load
 Dimension as UsedField
Resident
 Dimension
Where Len(%GroupId)=0
AND Left(Trim(Dimension),1) <> '=';

// Now, dimensions used in listboxes
Concatenate (FieldsUsedInObjects)
Load
 Field as UsedField
Resident
 SheetObject
Where Len(Field) > 0;

// We will use this Field Map to try and locate field names in
expressions.
// Is is simply the field name and then a string that we can easily
find.
FieldMap:
Mapping
Load
 FieldName,
 '|%%%FIELD.MAP%%%|' & FieldName & '|'
Resident
 FieldDescription;

// Create a table of all the Expressions
// Begin with the Expression table
ExpressionLocations:
Load
 Expression
Resident
 Expression;

// Now add the Text value from SheetObjects, but only if it starts
with '='
Concatenate (ExpressionLocations)
Load
 Text As Expression
Resident
 SheetObject
Where Len(Trim(Text))>0 and Left(Trim(Text), 1) = '=';

Chapter 4

[225]

// Same rule for Captions
Concatenate (ExpressionLocations)
Load
 Caption As Expression
Resident
 SheetObject
Where Len(Trim(Caption))>0 and Left(Trim(Caption), 1) = '=';

// Add calculated dimensions - again, start with '='
Concatenate (ExpressionLocations)
Load
 Dimension as Expression
Resident
 Dimension
Where Len(%GroupId)=0
AND Left(Trim(Dimension),1) = '=';

// Add in variables. We don't exclude based on '=' here because
// a variable without '=' might still hold a field name
Concatenate (ExpressionLocations)
Load
 RawValue as Expression
Resident
 VariableDescription;

// Now, we will parse out any CRLF and LF in expressions
// (SubField with only 2 parameters will create multiple rows)
// and then we can use MapSubString to try and map our field
// list against each expression row. If it maps, we can parse
// out the field name using SubField (again!)
// This list is concatenated onto the table that we started
// creating earlier.
Concatenate (FieldsUsedInObjects)
Load
 SubField(Mid(TempExpr, Index(TempExpr, '|%%%FIELD.MAP%%%|')),'|',3)
As UsedField;
Load
 MapSubString('FieldMap', Expression) as TempExpr;
Load
 SubField(Expression, chr(10)) As Expression;
Load

Data Governance

[226]

 SubField(Expression, chr(13) & chr(10)) as Expression
Resident
 ExpressionLocations;

Drop Table ExpressionLocations;

// Add in Key fields to the IsUsed list
Concatenate (FieldsUsedInObjects)
Load
 FieldName as UsedField
Resident
 FieldDescription
Where Field.IsKeyField=-1;

// Create a temp table:
tmp_Used:
Load Distinct
 UsedField,
 $(YesNoFlag(1)) As Field.IsUsed
Resident
 FieldsUsedInObjects;

Concatenate (tmp_Used)
Load Distinct
 FieldName as UsedField,
 $(YesNoFlag(0)) as Field.IsUsed
Resident
 FieldDescription
Where Not Exists(UsedField, FieldName);

Let vRowCount=NoOfRows('FieldDescription');

// Now, join this into the field table
Left Join (FieldDescription)
Load UsedField as FieldName,
 Field.IsUsed
Resident
 tmp_Used;

Drop Table tmp_Used;

Let vRowCount=NoOfRows('FieldDescription');

Note that Rob Wunderlich's Document Analyzer does a more
in-depth job of analyzing whether a field is being used or not.

Chapter 4

[227]

Deploying the QlikView Governance
Dashboard
The QlikView Governance Dashboard is a tool provided by Qlik that allows you
to import multiple data sources from your QlikView implementation and view all
information in one place:

Managing profiles
The Governance Dashboard is a QlikView application, and therefore, we can have
different copies of this application for different purposes, for example:

• Complete access to all information (default)
• Access to just operational information
• Access to just document metadata
• Access to just a subset of documents

The install sets things up so that we can quickly create new profiles with
different settings.

Data Governance

[228]

The installation will, by default, install to C:\ProgramData\QlikTech\
Governance_1.1. It will create a subfolder here called profiles and within that
there will be three further subfolders:

Folder Description
default This contains the default dashboard that

will be most people's first (and only!) use
of it

template A blank template containing all the files
and subfolders that we will need to create
a new profile

template_MultiClusterProfileFolder A template to use when we are performing
analysis in a multicluster environment

To create a new profile, we simply copy the entire template folder and rename the
new folder to whatever name we want to call it. Now, we can open the Governance
Dashboard.qvw file in this folder and configure the settings.

Configuring the Dashboard options
Before we run the Governance Dashboard reload, we need to configure the settings
in the Configuration tab:

Chapter 4

[229]

The main configuration areas are as follows:

Area Description
User Configuration
Script?

This allows us to specify a text file that contains script that
will be included in the reload. This script is usually to modify
variables, but you can add any valid QlikView script into it.

Multi-cluster Reload? If this is on, all the other options are disabled and the reload
will use the MultiCluster_UserConfig_Template.txt
file for its settings.

Profile This allows us to specify the install directory for the
Governance Dashboard and the folder for our profile settings.

Documents Here, we will list a set of folders that will contain QVW, QVD,
or QVX files that we want to be scanned.

Operational Logs Here, we can turn settings around what operational logs should
be included in the dashboard on or off.

Repository Path The repository stores all the server, publisher, and similar
settings in XML files.

Once the configuration has been entered, you can click on the Validate Profile & File
Paths button to verify that all is valid. If a path is incorrect, an alert will be shown:

Once the configuration is entered and tested, we can click on the Scan button to begin
the reload.

You might get an error from the reload, and unfortunately, it is
very difficult to know exactly what that error is because the entire
script has been put into a hidden script and error messages are
not displayed from within the hidden script:

Data Governance

[230]

The only thing that you can immediately do is double-check all your
configurations and see whether you have made a mistake somewhere.
If you still have difficulties, get onto the Qlik Community and ask
questions there.

Reviewing operational information
Once the reload is complete, you can use operational dashboards to review information
about applications that users use and when they use them:

The tabs under OPERATIONS provide you with the following information:

Tab Description
Server This gives server memory usage statistics and is useful when

analyzing for memory-related issues
Publisher This gives reload and other task statuses and times
Sessions This provides information on the number of sessions, users,

and documents
Log Details This provides detailed log information, which is very good for

error hunting

Chapter 4

[231]

Analyzing application information
The other side of the Governance Dashboard is the information on your applications
such as complexity and data lineage. This is useful from many aspects of application
maintenance, for example, being able to look at expressions and look for instances
where an expression is actually used across multiple applications:

In his blog post on the QlikView cache, Henric Cronström explains that
the text of an expression is part of the cache key and so differences in
case will make a difference! (http://community.qlik.com/blogs/
qlikviewdesignblog/2014/04/14/the-qlikview-cache)
Sum([Claim Value]) is not the same as sum([Claim Value])!

The tabs in the APPLICATIONS area are as follows:

Tab Description
Complexity This will assign a score to each application based on a

number of metrics, such as number of objects, rows, and
expressions. The more complex an application, the lower
its performance is likely to be.

http://community.qlik.com/blogs/qlikviewdesignblog/2014/04/14/the-qlikview-cache
http://community.qlik.com/blogs/qlikviewdesignblog/2014/04/14/the-qlikview-cache

Data Governance

[232]

Tab Description
Objects This allows you to drill into the actual objects in each

document to analyze which ones might be causing you
problems, which ones have incorrect expressions, and
so forth.

Lineage This will list all the data sources for an application and
also allow you to discover which sources are shared across
multiple applications.

Summary
This chapter has given us a lot of information on an area that many QlikView
developers might rather avoid—metadata. However, we should realize now that
metadata is important, and more importantly, is straightforward to add to our
QlikView applications.

We now have a range of tools to help us manage our metadata, including the QlikView
Governance Dashboard.

In the next chapter, we will get into the, fun for many, subject of advanced expressions.
This will include plenty of work around the subjects of Set Analysis and AGGR, which
are very powerful tools that will really propel our mastery of QlikView.

Advanced Expressions
"The general who wins a battle makes many calculations in his temple before
the battle is fought. The general who loses a battle makes but few calculations
beforehand. Thus do many calculations lead to victory, and few calculations
to defeat: how much more no calculation at all! It is by attention to this point
that I can foresee who is likely to win or lose."

 — Sun Tzu, The Art of War

There is a great skill in creating the right expression to calculate the right answer.
Being able to do this in all circumstances relies on having a good knowledge of creating
advanced expressions. This is what this chapter aims to teach you. Of course, the best
path to mastery in this subject is actually getting out and doing it, but there is a great
argument here for regularly practicing with dummy or test datasets.

When presented with a problem that needs to be solved, all the QlikView masters will
not necessarily know immediately how to answer it. What they will have though is a
very good idea of where to start, that is, what to try and what not to try. This is what
I hope to impart to you here. Knowing how to create many advanced expressions
will arm you to know where to apply them—and where not to apply them.

This is one area of QlikView that is alien to many people. For some reason, they
fear the whole idea of concepts such as Set Analysis and Aggr. However, the reality
is that these concepts are actually very simple and supremely logical. Once you get
your head around them, you will wonder what all the fuss was about.

The following are the topics we'll cover in this chapter:

• Reviewing basic concepts
• Using range functions
• Understanding Dollar-sign Expansion

Advanced Expressions

[234]

• Using advanced Set Analysis
• Calculating vertically

Reviewing basic concepts
Before we set off on the journey of advanced expressions, it is a good idea to step
back and look at some of the simpler methods of doing things. Set Analysis only
arrived in Version 8.5 of QlikView, so those of us who worked with the versions
before that will have done things in a few different ways.

Searching in QlikView
Field searching in QlikView is one of the most powerful features. It is a feature that
has been added and enhanced over the years. Many users will be familiar with the
search icon on a listbox:

Clicking on this icon will open the search box for that field:

When we enter search text, the results are highlighted in the listbox. We can choose
to click on any of the results to make a selection, press the Enter key to select all
of the matching results, or press Ctrl + Enter to add the matching results to the
existing selections.

Chapter 5

[235]

There are some other ways that we can call up the search box for a listbox. The easiest
way is to actually just click on the listbox's caption and just start typing, and the default
search type for that listbox will get activated. The other way that you can activate
a search is by right-clicking on the listbox and selecting the required search from
the menu:

Field searches can also be activated in other sheet objects. Search will be on by
default in the multibox but can also be enabled in the table box, current selections
box, straight table, and pivot table (using the Dropdown Select option in the
Presentation tab). They can be identified from the small black down arrow
alongside the field caption:

Clicking on this down arrow will show a captionless listbox. You can select in this
listbox just as with a normal listbox. If you start typing, the search box will appear,
just as when you click on the caption of a normal listbox. If you right-click on this
pop-up listbox, you will get the same options as if you right-click on a normal listbox.

There are several search types that we need to understand; they are discussed in the
upcoming sections.

Searching for text
Text-based searches are the most frequently used. There are two main options for
text-based search: normal and wildcard. The default setting for the search mode
is specified in the Presentation tab under Document Properties:

Advanced Expressions

[236]

There is a third option in these properties: Use Previous. What this means is that
whatever the user has done last will be the default. The user can override the search
type that is presented, so this setting remembers whatever they have done.

Wildcard search
A wildcard search uses one of the two wildcard characters, in whatever combination
we desire, to search for text. The characters are as follows:

Character Description
* This wildcard replaces zero or more characters
? This wildcard replaces exactly one character

Some example searches are shown in the following table:

Example search Example results in country
g Germany, Gabon, British Guiana, United Kingdom,

Argentina
g* Germany, Gabon
*on Lebanon, Gabon
*o? Gabon, United Kingdom, Lebanon
f*e France

Wildcards are extremely flexible, but can be very expensive if used to search a lot
of data.

If the default search is not a wildcard, you can start typing the * or ? character and
QlikView will automatically switch to a wildcard search.

We should consider that the search will start working immediately when
we start typing. There can be a delay with fields that have many values,
so we need to be careful about the default search options.

Normal search
A normal search doesn't use wildcards at all. Instead, it tries to match the beginning
of words in the data to what the user is typing. This is actually a more natural type
of search for users because they will often type the start of what they are looking
for and might be confused by wildcard options. If the user types multiple words,
separated by a space, all of the words are used to attempt a match.

Chapter 5

[237]

The following are some example searches:

Example search Example results in country
g Germany, Gabon, British Guiana
ger Germany
k Kenya, United Kingdom
un kin United Kingdom
blah king United Kingdom

If the default search is wildcard, you can switch to the normal search by simply
deleting the wildcard characters and then typing. QlikView will automatically
switch to the normal search.

Fuzzy search
Fuzzy search isn't a text comparison. Instead, it applies a phonetic algorithm to
the search term and the data and then sorts the listbox based on the search score.
Words that are a better phonetic match will be sorted to the top and those that
are not a good match will be at the bottom.

Associative search
The associative search option will search for a value across other fields, not
including the field that you are searching in. When you select the value in the
associative search, it then selects the values in the field that you are searching
in that are associated with the value that you have selected. Ok, that sounds like
a bit of a mouthful, so I will give an example. When I click on the search button,
say, the Country field, I can see a double chevron (>>) button. Clicking on this
button activates the associative search, as follows:

Advanced Expressions

[238]

If I type 2009 into this search box now, it doesn't search in Country; it searches every
other field except Country. I can see that it has found a value under Year; if I select
this and then press Enter, it will select all of the countries that are associated with the
value 2009 in Year.

Let's put this functionality in a little more perspective; to achieve the same result
without an associative search, we would need to select 2009 in the Year field, select
the possible values from the Country field (there is a right-click option to select
possible values), and then clear the Year field. It is a pretty cool search function!

Of course, it is not always logical that an associative search should look in every
single field. For example, in the preceding screenshot, we see that the field DI.Year
is searched. This is a field in a data island table (for more information on data islands,
refer to the Data islands section) and so will not be associated. Also, there are many
fields in the dataset, for example, keys and numeric values, that should not be
searched. It is possible, in the listbox properties, to select those fields that should be
included rather than looking at all fields.

In the General tab of the listbox properties, there is a button called More Search
Settings that will open a dialog box to allow us to configure this:

Chapter 5

[239]

Advanced search
The advanced search feature in QlikView is actually incredibly powerful. It allows
us to search for values in a field based on the comparison of an expression. It is as
if we create a simple straight table with the searched field as the dimension and the
expression that we want to calculate, then select those dimensions in the chart that
meet whatever criteria we choose.

To open the advanced search dialog, we can right-click on a listbox and select
Advanced Search from the menu:

We enter the = sign, which indicates that this is an advanced search, and then
the expression that we want to calculate. When we click on the Go button, this
expression is evaluated against all the values in the field (in this case, Country),
and where it is true, these values are selected.

The really powerful thing about this is that this expression can be as complex
as we need it to be. As long as it is valid QlikView syntax, it can be used in an
advanced search. All that is needed is that the expression will return a Boolean
response: true or false.

Advanced Expressions

[240]

Searching numeric fields
All of the text searching options mentioned previously—wildcard, normal, fuzzy,
associative, and advanced—also work with numeric fields. Additionally, we can
also use a numeric search with numeric fields.

Numeric search
The numeric search option allows us to use combinations of >, <, and = to perform
numeric searches. The following are some example combinations:

Example search Description
>99 This searches for all values that are greater than 99
<99 This searches for all values that are less than 99
>=99 This searches for all values that are greater than or equal to 99
<=99 This searches for all values that are less than or equal to 99
>99<199 This searches for all values that are greater than 99 but less

than 199
>=99<=199 This search for all values that are greater than or equal to 99

but less than or equal to 199

When we type the search expression into the numeric listbox, it will react in a way
similar to that of a text-based search:

Chapter 5

[241]

Automatic interpretation of searches
This is quite clever. When we use a search box, we can do any of the standard
searches—normal, wildcard, numeric, fuzzy, and advanced—and QlikView
will automatically interpret what type of search it is based on what we type.
Consider the following scenarios:

• If we just type text, without any special characters, QlikView will perform
a normal search

• If we use wildcards, *or ?, then QlikView will perform a wildcard search
• If we start the search with a ~ sign, then QlikView will perform a

fuzzy search
• If we start the search with an = sign, then QlikView will perform an

advanced search
• If we use a < or > sign, then QlikView will perform a numeric search
• If we enclose in parentheses and use a pipe symbol, QlikView will expect

multiple values

Multiple values search
We can pass multiple values to a search by enclosing them in parentheses and
separating the multiple values using a pipe symbol, for example:

(Germany|China)
(*ge*|*ch*)
(>=2009<=2011|>=2013<=2014)
(>=2009<=2011|*14)

Any valid search syntax will be acceptable within the different values. QlikView will
automatically interpret the search based on the rules mentioned.

It is worth noting that this syntax can also be used to pass
multiple values when using a Select in Field action.

Advanced Expressions

[242]

Searching in multiple listboxes
If we select multiple listboxes either by dragging across them or by clicking on them
while holding down the Shift key and then start typing, the subsequent search will
be performed across all of the selected listboxes:

Note that you cannot use the Enter key here to make a selection. You can
only now make a selection by clicking the mouse in one of the listboxes.

Chapter 5

[243]

Understanding bookmarks
We should know that a bookmark is a saved set of selections. When we save a
bookmark, all of the current selections will be stored. It is important to note that this
will include any advanced searches, so bookmarks can be used to store advanced logic.

A bookmark can be recalled by the user, but they can also be used to set the parameters
for reports and alerts and can be used in Set Analysis.

Saving a bookmark
We can save a bookmark using the menu options or if there is a bookmark object
added to the user interface, we can use that to create it. Either way, the Add
Bookmark dialog will appear:

Advanced Expressions

[244]

The options for the bookmark are as follows:

Option Description
Make this bookmark a document
(server) bookmark

This tells QlikView to store the bookmark in the
document for use by all users (or on the server
if using a server document, where we also have
the option to share with other users).

Share Bookmark with Other Users This option is for server bookmarks only; we can
choose to share them with other server users.

Include Selections in Bookmark This will normally be a default option—you
usually want your selections to be stored in the
bookmark! Of course, there are use cases where
you might not, such as only storing the layout
state or input field values.

Make bookmark apply on top of
current selection

By default, this is off and the bookmark's store
selections will completely replace whatever
current selections we have when the bookmark
is recalled. If this option is on, only the fields
that have stored values in the bookmark
will have their values changed and all other
selections will be retained.

Include Layout State This will retain information about which tab
is open and which charts are currently active.
When recalled, the same tab and charts should
be opened.

Include Scroll Position If your chart is a tabular chart, the bookmark
will retain information about how far you have
scrolled down the chart. Worth noting is the fact
that this will always be a "best guess" effort as
the data will probably change in the meantime.

Include Input Field Values This will cause any input field values to be
stored in the bookmark. This is actually the
only way to share input field values between
different users.

Info Text This could be just information that we want
to store to remind ourselves about what this
bookmark contains. It will be the text displayed
if the pop-up option is selected.

Pop-Up Message If this is selected (and I strongly recommend
that it should not be!), every time the bookmark
is recalled, Info Text will be displayed in a
message box. It becomes very annoying after
a while.

Chapter 5

[245]

Managing bookmarks
The More option from the Bookmarks menu (Ctrl + Shift + B) allows us to manage
our bookmarks:

Possibly, the most interesting option here is the Export and Import buttons. These
allow us to export bookmarks to an XML file and then import them into different
documents later.

Using variables in QlikView
Many calculations will rely on a variable. This can be a simple value, such as an
exchange rate entered into an input box, a percentage entered using a slider, or a
more complex calculation.

SET versus LET
We are probably aware that variables can be entered either in the QlikView script via
the Variables tab under Document Properties or using the Variable Overview dialog.

When creating a variable in the script, we do this using either the SET or LET
keywords. For example, to create the v1 and v2 variables, use:

SET v1=1+1;
LET v2=1+1;

Advanced Expressions

[246]

The SET keyword will assign the text on the right-hand side of the equals sign to the
variable. The LET keyword will instead evaluate the text on the right-hand side of
the equals sign and then assign the result to the variable. If we load this script in the
QlikView debugger, we will see the following result:

We can see that v1 has been assigned the text "1+1", whereas for v2, the text has
been evaluated and the value of 2 has been assigned to the variable.

We can achieve a similar result when using the Variables tab under Document
Properties or using the Variable Overview dialog, to create a variable. When we
add a variable, we can either just enter text in the Definition box, in which case just
the text is assigned to the variable, or we can begin the definition with an = sign that
causes the expression to be evaluated and the result of the calculation gets assigned
to the variable, for example, using the Variable Overview to create v3 and v4, you
get the following:

Chapter 5

[247]

As with v1 and v2, v3 will have the text "1+1" while v4 will evaluate to 2.

There is no difference between using SET in the script and assigning text to a variable
in the Variable Overview window. There is, however, a difference between using
LET in the script and using = at the start of the variable definition. In the script, the
result is calculated once during the script execution and the variable will then have
a static value. If we use the = sign at the start of the definition, the variable's value
will be recalculated every time there is a new selection made by users.

Using variables to hold common expressions
We will quite often use variables to hold commonly used expressions. That way,
if the expression needs to change, then we don't need to hunt down every use of
the expression; we can just change the variable.

Advanced Expressions

[248]

The best practice here is to define these variables in the script with a SET statement.
Quite often, these SET statements are stored in a separate QVS that might be shared
with several documents, especially if the expressions in question are for color values
that will be used throughout the organization. For example, we can have an external
variables file with the following lines:

// Color expressions
SET cCompanyGreen=ARGB(255,20,228,68);
SET cCompanyBlue=ARGB(200,0,32,200);
SET cCompanyAlert=ARGB(255,255,0,0);
SET cCompanyWarning=ARGB(200,255,126,0);

Then, we can load them into our main script using the following:

$(Must_Include=..\scripts\variables.qvs);

If one of the colors needs to change, we can simply update the file and the change
will be updated in every document that uses it on the next reload.

Using variables with Dollar-sign Expansion
We probably have seen variables being used in scripts and expressions and might have
come across the concept of Dollar-sign Expansion. This function, which we will delve
into in much more detail, allows us to access variable values in a way that is not quite
intuitive for those who are used to common programming languages. To add to the
confusion, we don't always need to use Dollar-sign Expansion with variables; we can
use them sometimes just like other programming languages!

With Dollar-sign Expansion, we will wrap the variable name in parentheses preceded
by a dollar sign, for example:

LET vx=$(vy)*2;

When this is processed, what happens is that the value inside the parentheses is
evaluated and placed into the expression to replace the dollar sign. Once all the
Dollar-sign Expansions have been completed, the whole expression is evaluated
with the expanded values. We can think of it as a two-step process, for example,
if vy has a value of 2, LET vx=$(vy)*2; becomes LET vx=2*2;.

This is now evaluated and the result, 4, is placed in vx. If we were looking at this
script in the debugger window, we would actually see this two-step process in
action. The central bar of the debugger will display the line that is about to be
executed. If there are Dollar-sign Expansions, then the line that is displayed is
with the values already expanded:

Chapter 5

[249]

In fact, this is one of the situations where we don't have to use Dollar-sign Expansion.
If a variable contains just a numeric value, then it is allowable to just call:

LET vx=vy*2;

Limiting calculations
There are quite a few ways of restricting a calculation to something other than
the current selections. Before we had Set Analysis, we had to do things differently.
It is useful to know about these because there are still circumstances in which they
are still good to use.

Sum of If
A Sum of If means that we are performing an aggregation, such as Sum, on the
results of an If statement. Consider the following example:

Sum(If(Country='Germany', Sales, 0))

In this case, the Sales value will only be summed if Country is equal to Germany.

On a smaller dataset, you will not see much of an issue with this calculation. However,
as the dataset increases in size, we will find that this way of performing calculations
is relatively inefficient, not least because the comparison is text-based. Also, we need
to consider that if a user selects a set of countries, or any other selection that excludes
Germany, then the result will be zero, which might not be what you want to happen.

Advanced Expressions

[250]

It isn't a QlikView issue, but just a computer issue; however, any comparison that
is done using text values is always going to be more expensive than a comparison
using numbers.

Flag arithmetic
One of the ways that we can improve performance of a comparison calculation is
to create a numeric flag field in the script. For example, we can do the following
in the script:

Load
 ...
 If(Country='Germany',1,0) As Germany_Flag,
 ...

This will create a (quite efficiently stored) field that contains just 1 or 0. We can use
this in an expression like the following:

Sum(If(Germany_Flag=1, Sales, 0))

This expression will perform an order of magnitude better than the equivalent text
comparison. However, the following calculation will be even better:

Sum(Germany_Flag * Sales)

As there is no comparison happening here, it is a fairly straightforward mathematical
calculation for the system to calculate, and it will be performed even faster than the
Sum of If.

As noted in the Creating flags for well-known conditions section of
Chapter 1, Performance Tuning and Scalability, the flag arithmetic
works better if there are relatively fewer rows in the dimension table
than in the fact table. Where there are a large number of rows in the
dimension table, Set Analysis with the flag field will perform better.

This type of flag arithmetic is very common, and we will always look to create
flags like these in the script to improve the efficiency of calculations in chart
expressions. Here are a couple of examples of flags that we will often create
in fact or calendar tables:

Load
 ...
 -YearToDate(DateField) As YTD_Flag,
 -YearToDate(DateField,-1) As LYTD_Flag,
 ...

Chapter 5

[251]

In this case, we are using a QlikView function (YearToDate) that returns a Boolean
result. In QlikView, Boolean false is always represented by 0. Any non-zero value
is Boolean true; however, QlikView functions will always return -1 for true.
Hence, the minus sign prefixed to the function will change the -1 result to a 1.

Calculations using variables
On occasions where we might want some flexibility around what we calculate from
what the users select, we might ask those users to change variables, usually using
the slider or calendar controls, and then use those variables in the expressions.

For example, if we had two variables called vMinDate and vMaxDate, we can add
calendar controls to allow the user to modify them:

We can now add an expression to calculate the sales between those two values in the
following manner:

Sum(if(DateID>=$(vMinDate) and DateID<=$(vMaxDate), LineValue, 0))

Advanced Expressions

[252]

We can also grab the to-date calculation (for example, to calculate a balance) in the
following manner:

Sum(if(DateID<=$(vMaxDate), LineValue, 0))

Data islands
Using a variable or set of variables can be quite flexible but sometimes we might
want to give users even more options for selections, while still keeping those selections
separate from the main data model. In these circumstances, we can create a completely
separate data model, which has full QlikView selectability, and then derive the values
from this data model that should be used in the calculations for the main data model.
When we create separate data models like this, the non-main data model is called a
data island. For example, we can load a calendar table in the following manner:

// Load the Date Island
Let vMinDate=Floor(MakeDate(2009,1,1));
Let vMaxDate=Floor(MakeDate(2014,12,31));
Let vDiff=vMaxDate-vMinDate+1;

Qualify *;
DI:
Load
 TempDate as DateID,
 Year(TempDate) As Year,
 Month(TempDate) As Month;
Load
 $(vMinDate)+RecNo()-1 As TempDate
AutoGenerate($(vDiff));
Unqualify *;
Set vMinDate="=Min(DI.DateID)";
Set vMaxDate="=Max(DI.DateID)";

The Qualify statement prefixes the name of the table (DI) to each field so that these
fields should not be associated to the rest of the data model.

We use the SET statements at the end to add the calculation of minimum and
maximum dates to the variables. We can then use those variables in expressions
as shown:

Sum(if(DateID>=$(vMinDate) and DateID<=$(vMaxDate), LineValue, 0))

Chapter 5

[253]

Otherwise, we can use those variables as shown in the following expression:

Sum(if(DateID<=$(vMaxDate), LineValue, 0))

This data island does not need to be just a single table. If it makes sense, it can be a
small data model in itself and perhaps two separate calendar tables connected via
a link table.

We do have to be careful that a data island does not become a separate data model,
with its own facts and dimensions, as this can be against the license agreement when
using document licenses.

Set Analysis
After having done any basic QlikView training, we will have had some sort of
introduction to Set Analysis. This is one of the most powerful features of QlikView
and allows us to create some great solutions. Of course, like any powerful feature,
there is room for misuse and abuse.

In this segment, we will revisit some of the basics of Set Analysis and will explore
more advanced topics later on in this chapter.

Explaining what we mean by a set
Understanding a little about sets is the key to understanding how QlikView works.
We already know about the symbol tables and the logical inference engine. A simple
Venn Diagram can help us understand how they hang together.

As I am writing this, it happens to be the 180th birthday of John
Venn (Google has a doodle!). John Venn was a mathematician,
fellow of the Royal Society, and President of Gonville and Caius
College, Cambridge. He also formalized and generalized the use
of what he called Eulerian Circles, but what we know today as
Venn Diagrams.

Advanced Expressions

[254]

When we load data into a QlikView document and we have no selections made,
we will have access to all the data points for the purpose of performing calculations,
as you can see:

In mathematical terms, this is our universe. It contains all of the entities that we
might want to consider. If we perform a simple Sum calculation across a field,
we will get the total value of all the values in that field.

Now, let's consider what happens when we make a selection in QlikView.
For example, if we were to select the value 2013 in the Year field, QlikView
would immediately apply the logical inference engine to establish all of the
values that are still available, as follows:

Now, when we perform the same Sum calculation, we only get a result based on the
values contained within the shaded area.

Chapter 5

[255]

If we were to make a further selection, for example, if we select both China and
Germany in Country, then QlikView will further reduce the dataset upon which
calculations are performed, as follows:

Now, the calculation of the Sum expression is only performed on the shaded area
where the two ellipses overlap.

That, in a nutshell, is how QlikView works. It is beautifully simple and a great way
of working with data from a data discovery point of view. However, we often want
to think about other considerations. For example, if the user has selected Germany,
what might be the value of everything else that isn't Germany? In the preceding
model, we no longer have access to the data about "not Germany" because it has
been excluded by selection.

Set identifiers
There are two main SET identifiers in every QlikView document:

Identifier Description
{1} This is the universe—the set of all possible values in the

document, regardless of any selections
{$} This represents the set of values based on current selections

Advanced Expressions

[256]

Note that the $ sign here is completely unrelated to the $ sign
used for Dollar-sign Expansion!

With no selections made in the document, {1} and {$} are identical. As selections
are made, {1} will not change while {$} will get smaller.

Other identifiers are possible in a QlikView document. All bookmarks will be a set
of the values based on the selections contained in the bookmark. Each Alternate State
will also be a set of its current selections.

We write a SET identifier into an expression inside the function to which the set will
apply, for example:

Sum({1} LineValue)
Sum({$} LineValue)
Sum({BM01} LineValue)
Sum({[My Bookmark]} LineValue)

If the SET identifier is not specified (as with most expressions), then the {$} set is used.

Set modifiers
The real power of Set Analysis comes when we can modify a set using modifiers.
Any set, such as {1}, {$}, bookmark, and so on, can be modified. We modify a set by
specifying an alternate set of values for a field. The values we specify will override
the values selected in this field in this set.

Set modifiers are written inside the SET identifier's curly braces using angle brackets.
The syntax will look like the following:

Function({Set_ID<Field1=NewSet1, Field2=NewSet2>} FieldValue)

What can sometimes confuse new users is that NewSet1 in the preceding syntax
is often a set of specified values that are written, again, inside curly braces. For
example, a set of values for Year can be written as follows:

{2009,2010,2011}

When this is included in a function, it looks like the following:

Sum({$<Year={2009,2010,2011}>} LineValue)

Otherwise, we can have multiple fields as shown:

Sum({$<Year={2011}, Country={'Germany','China'}>} LineValue)

Chapter 5

[257]

There are a lot of different brackets here (not to mention that if the field name has
a space, then you will need to use square brackets!) and this can lead to confusion.

There is an old developer's trick that can help you when writing out a set expression:
always open and close a pair of brackets before entering the content inside them.
This way, you always know that you will have a correctly matching pair. I might
write one of the previous expressions in the following steps:

Sum()
Sum({})
Sum({$<>})
Sum({$<Year={}>})
Sum({$<Year={2009,2010,2011}>} LineValue)

Now, of course, these set modifiers do not have to be static values. We can introduce
Dollar-sign Expansion into the expression to provide more dynamic calculations:

Sum({$<Year={$(vThisYear)}>} LineValue)
Sum({$<Year={$(vLastYear)}>} LineValue)

Understanding Dollar-sign Expansion
Dollar-sign Expansion is a process that allows us to replace text in an expression,
or line of script, with either the value of a variable or some other calculation.

Suppose that we have a variable with a value of 10 and we write an expression
like the following:

Sum(If(Field1=$(vValue), 1, 0))

The Dollar-sign expression, $(vValue), will get expanded to its value (10) and the
expression that gets executed will be as follows:

Sum(If(Field1=10, 1, 0))

We can also have a calculation inside the Dollar-sign expression like the following:

If(Year=$(=Year(Today())), LightGreen())

In this case, the function Year(Today()) will be calculated and its value replaced
into the main expression in the following manner:

If(Year=2014, LightGreen())

Advanced Expressions

[258]

We do have to be aware that it is the exact value of the Dollar-sign expression that
is replaced into the main expression, and it becomes as if we have typed that value
there. Therefore, if it is a string value rather than a numeric value, then we need to
make sure that we include the single quotes around the value.

For example, suppose that we have a variable called vCountry with a value of
Germany and we have a color expression in a bar chart like the following:

If(Country=$(vCountry), LightGreen())

We might be surprised to find that the Germany bar is not highlighted. This is
not such a surprise if we consider that the Dollar-sign Expansion will result in the
following expression:

If(Country=Germany, LightGreen())

To QlikView, this looks like you are trying to compare the Country field to another
field called Germany. Instead, we should have our original expression as shown:

If(Country='$(vCountry)', LightGreen())

This will expand out to the following:

If(Country='Germany', LightGreen())

Of course, it can be interesting to use Dollar-sign Expansion
to put different field names into an expression!

This issue is equally critical with dates. The problem is that sometimes all looks OK,
but we need to consider that, without quotes, the value 8/9/2014 will actually be
evaluated to 4.413549597263599e-4 (8 divided by 9 and then divided by 2014).

With dates, you can use quotes and then they will be evaluated correctly—as long as
the text of the date matches the field's date format. However, it can often be a better
practice to use a function like Floor or Num to transform your dates into numbers
instead of relying on the text format being correct.

Following the two-step process
As was mentioned in the Reviewing basic concepts section, whenever Dollar-expansion
is used, there is always a two-step process followed:

1. The expression or variable inside the Dollar-sign Expansion's parentheses is
calculated and its value is placed into the expression, or script line, to replace
the dollar-sign.

Chapter 5

[259]

2. The newly formed expression or script line is executed.

Following the steps in the script debugger
We can use the script debugger to follow the two steps of the Dollar-sign Expansion
process. For example, suppose that we had a piece of script as shown:

Let vMinDate=Floor(MakeDate(2009,1,1));
Let vMaxDate=Floor(MakeDate(2014,12,31));
Let vDiff=vMaxDate-vMinDate+1;

DI:
Load
 TempDate as DateID,
 Year(TempDate) As Year,
 Month(TempDate) As Month;
Load
 $(vMinDate)+RecNo()-1 As TempDate
AutoGenerate($(vDiff));

If we run the script debugger and put a breakpoint on the second load statement,
we can observe what is happening when the Dollar-sign Expansion happens:

Advanced Expressions

[260]

If we look at the central panel, we can see that the Dollar-sign Expansion has
replaced $(vMinDate) with 39814 and $(vDiff) with 2191. The original
expression is as follows:

Load
 $(vMinDate)+RecNo()-1 As TempDate
AutoGenerate($(vDiff));

This preceding code is now changed to the following:

Load
 39814+RecNo()-1 As TempDate
AutoGenerate(2191);

This debugger process is an excellent way of testing our Dollar-sign Expansion in
the script.

We can also use the Trace statement to echo variable values to
the Script Execution Dialog box and to the document log file.

Following the steps in a chart expression
The best way to follow the steps in a chart expression, and hence to debug the
Dollar-sign Expansion, is to use a Straight Table. One of the features of all charts is
that if you don't specify a label for an expression, then the expression itself is used
as the label, but not just the expression as entered—it is the expression after the
first step with the Dollar-sign Expansion complete. This label is the easiest seen
in a Straight Table.

For example, I add a Straight Table to my document, with no dimension, and have
set the expression to the following:

Sum(If(Country='$(vCountry)', 1, 0))

Then, I can see the expanded expression by hovering over the label of the expression:

Chapter 5

[261]

We can also right-click on the label and choose Copy to
Clipboard | Cell Value, which allows us to paste the
expression into a text editor (or another chart or text
object). This can be useful if the expression is very long.

Understanding when the steps happen in chart
expressions
One thing that might become apparent here is that because the first step, the actual
expansion, happens before the expression is calculated; this means that the first step
is not calculated in reference to the dimensions of the chart. The first step is calculated
outside of the chart.

This can be a slight downside because it means that we can't successfully use a chart's
dimension value in a Dollar-sign Expansion expression used inside that chart.

Just to illustrate this, suppose that I add a Straight Table with Country as a dimension,
and then, I add the following expression:

'$(=MaxString(Country))'

I might expect that this should just calculate out the same value as the dimension on
each row. However, this is not what happens:

Because the Dollar-sign Expansion has been calculated outside of the chart, it will
just calculate MaxString based on the current selections in the document.

Advanced Expressions

[262]

Using parameters with variables and
Dollar-sign Expansion
We can use parameters in variables and then pass those parameters when we use
the Dollar-sign Expansion. This creates a type of macro that can be used in script
or in expressions.

A variable parameter is identified with a Dollar-sign and a number. The first
parameter will be $1, the second will be $2, and so on.

For example, if I have fields that contain a code and a description separated by a
period, I can define a couple of variables in the script in the following manner:

// Macros
SET mLefty=Left($1, index($1, '.')-1);
SET mRighty=Mid($1, index($1, '.')+1);

Then, I can load my data in the following manner:

Test:
Load
 $(mLefty(Field1)) as Field1.Code,
 $(mRighty(Field1)) as Field1.Desc
Inline [
Field1
001.Value one
002.Value two
003.Value three
];

I can also call it in an expression, for example:

=$(mLefty('004.Field Four'))

Of course, this might not work so well in a chart, because of the step order, but it
would work well in a text object, caption, and so on.

Using variables in expressions
In many cases, we can just use a variable in an expression as we would in any other
programming language:

If(Country=vCountry, Sum(LineValue), 0)

Chapter 5

[263]

However, if the variable does not contain a simple value, but instead contains
an expression, then it will not work like this and we need to use Dollar-sign
Expansion instead.

For example, if we have a variable called cCompanyWarning that has a value
of ARGB(200,255,126,0), then we cannot simply use this in a color expression
because, as far as QlikView is concerned, this is not a color, it is just text. However,
suppose that we put it into an expression like the following:

=$(cCompanyWarning)

We can see that it is no longer just text. The text will get replaced into the expression
and then QlikView will evaluate the ARGB function as if we had typed it there in the
first place.

Using advanced Set Analysis
Basic Set Analysis should be in even the most junior QlikView developer's arsenal
of tools. The ability to add modifiers, most frequently to the $ set, allows us to
perform some very useful calculations that we either couldn't perform at all
without Set Analysis, or that would have required us to do a lot more work.

Identifying the identifiers
We should already know about at least two of the identifiers that we can use in a
Set Analysis expression: 1 and $. We also should know that the $ set is the default
so that if there is no set identifier specified, then QlikView will use the $ set, which
is just for current selections.

The following table shows a list of all the identifiers that you may come across:

Identifier Description
1 This is the universe—it represents all of the values within the

document, ignoring any selections.
$ This is the set that represents the values in the dataset as they

are based on current selections. This is the default set.
$n This set represents the nth last set of current selections that

you might navigate by clicking on the Back button on the
navigation toolbar. $1 is the set of selections before you made
the most recent selection, $2 is the second last set, and so on.
This is rarely used.

Advanced Expressions

[264]

Identifier Description
$_n This is similar to $n except that it gives access to the nth

forward set of selections that you might navigate by clicking
on the Forward button on the navigation toolbar. Therefore,
it is only available if a user has clicked on the Back button.
This is even more rarely used than $n.

Bookmark (ID or
name)

We can use a bookmark as a set identifier, representing the
set of values that would be if the bookmark were applied.
The identifier can be used as either the bookmark name or
bookmark identifier (for example, BM01).

State name When we use Alternate States in an application, each state
name becomes an identifier that represents the current
selections in that state. In this case, the $ identifier will still
represent the current selections set in the default state, but
the default set in an expression will depend on the state of
the object containing the expression.

Understanding that modifiers are sets
We know that the true power of Set Analysis comes not just with the ability to
specify different identifiers in an expression (although having just that could be quite
powerful) but with the ability to modify those sets with our own set of selections.

At this stage, we should be familiar with using a Set Analysis expression with
modifiers as shown:

Sum({$<Year={2012,2013}>} SalesValue)

Here, we appear to have a field called Year compared to an element value list of
{2012,2013}.

It makes some kind of sense that Year is equal to either 2012 or 2013 but actually
the = sign here does not actually mean "equals". It can't really because Year can't
be "equal" to both values.

What we have to understand is that the values on both sides of the = sign are both
sets. Year is a data field but that is actually a set of values. The {2012,2013} list is
also a set. Therefore, the = sign becomes not a direct comparison, but like a union
operation between the set of all Year values and the set of values in the braces.

We have to be careful about this because I have seen confusion around it. For example,
it is valid to have another field instead of an element list (the list of values enclosed in
{}) as shown:

Sum({$<OrderDate=DeliveryDate>} OrderValue)

Chapter 5

[265]

I have seen this described as being where OrderDate is equal to DeliveryDate.
This is incorrect! This set will give you all values where the OrderDate values are
in the range of the DeliveryDate values. For example, suppose that we have the
following dataset:

Orders:
Load * Inline [
OrderID, OrderDate, DeliveryDate, OrderValue
1, 2014-08-10, 2014-08-10, 100
2, 2014-08-10, 2014-08-11, 100
3, 2014-08-11, 2014-08-12, 100
4, 2014-08-13, 2014-08-14, 100
];

We might expect that the preceding expression would only match for the first order.
However, it could match for the first three orders! The union of the values in the
OrderDate field with the values in DeliveryDate will actually only exclude the last
order. The order dates in orders 1 and 2 match to the delivery date from order 1,
while the order date from order 3 matches to the delivery date from order 2.

Note that when using a field instead of an element value list,
the comparison set of values becomes the selected values in the
field, not the possible values. If you want the possible values,
you should use a P() set (as discussed later).

Set arithmetic
We can use mathematical set arithmetic with any set such as identifier, field, or
element list. The operators only work on sets and return a set result. The operators
are listed in the following table:

Operator Description Venn diagram
+ (Union) The result is a set that represents the union

of the sets.

Advanced Expressions

[266]

Operator Description Venn diagram
- (Exclusion) The result will be all of the values in

the first set that are not included in the
second set.
- can also be used as a unary operator
(just with one set) where it will return
the complement set, for example:
Sum({$<OrderDa
te=-{'2014-08-10'}>} OrderValue)

*
(Intersection)

The result will be a set of all the values that
are common to both sets.

/ (Symmetric
difference)

The result will be a set of all the values that
are in either set but not the values that are
common to both.

As stated previously, these sets can be applied to identifiers, fields, and element lists.
So we can create a set in the following manner:

Sum({$*BM01} SalesValue)

This will give us the intersection of current selections and the bookmark BM01.

We can also have a set as follows:

Sum({$<OrderDate=DeliveryDate-{'2014-08-13','2014-08-11'}>}
OrderValue)

We can get quite sophisticated with this set arithmetic. If we do need to have
more than one set operators, we should remember to use parentheses because
($*BM01)-BM02 is different from $*(BM01-BM02).

Where there is a set comparison that includes the field that we are modifying, we
can make use of some shorthand; this will be familiar to C/C#/Java programmers.
For example, if we want every year except for one particular year, we can perform
the following:

Sum({$<Year=Year-{2013}>} SalesValue)

We can shorten the expression in the following manner:

Sum({$<Year-={2013}>} SalesValue)

Chapter 5

[267]

We can equally perform similar shorthand with the other operators:

+=
*=
/=

Using searches in Set Analysis
When we first learned to use Set Analysis, we might have learned that we can
use wildcard search within a modifier. This is quite a powerful feature. However,
we can really enhance what we can do with Set Analysis when we learn that we
can also use advanced search within our modifiers.

Essentially, any exact match, wildcard, or advanced search that we can use in a
search dialog in a listbox can be used in a modifier.

For example, if we want to see the sales for Germany, we can use an exact match:

Sum({<Country={'Germany'}>} LineValue)

If we are looking for sales for years in the 2010s, we might do this:

Sum({<Year={"201*"}>} LineValue)

If we want sales since 2011, we can do this:

Sum({<Year={">=2011"}>} LineValue)

How about we check for all sales for those countries that sold more than 5, 000, 000
in 2013:

Sum({<Country={"=Sum({<Year={2013}>} LineValue)>5000000"}>} LineValue)

We know that if we want to get the sales for a list of countries, we can simply list
them in an element value list like this:

Sum({<Country={'Germany','China'}>} LineValue)

However, we also have the option to use search syntax like this:

Sum({<Country={"(Germany|China)"}>} LineValue)

And, as we saw in the earlier part of this chapter, that syntax allows us to include
multiple search options:

Sum({<Year={"(2010|2013|200*)"}>} LineValue)

Advanced Expressions

[268]

This can also be expressed as follows:

Sum({<Year={2010,2013,"200*"}>} LineValue)

There is a convention that we should use single quotes with literal
values and use double quotes with wildcard and other searches.
However, they are actually interchangeable. This is useful to know
if you need to use one or the other in the text of the search.

Using Dollar-sign Expansion with Set Analysis
So far, we have used mostly static values in our example modifiers. However, the most
power will come when we combine modifiers and Dollar-sign Expansion.

There is no great magic here. Wherever we might use a static value, we just replace it
with a Dollar-sign Expansion. For example, we can use the following:

Sum({<Year={$(vMaxYear)}>} LineValue)

We can also use the following:

Sum({<Year={$(=Max(Year))}>} LineValue)

The only thing that we need to really consider here is that when performing an exact
match with dates, we need to make sure that the value returned from the Dollar-sign
Expansion matches the text of the date's dual value. It isn't such an issue if you are
doing a greater-than or less-than comparison, because then you can use either the dual
text or numeric format. For example, if we have a Month field that is Dual('Jan',1),
Dual('Feb',2), and so on, then we can't do the following:

Sum({<Month={3}>} LineValue)

Instead, we need to do this:

Sum({<Month={'Mar'}>} LineValue)

Although the following is also fine:

Sum({<Month={">=3<5"}>} LineValue)

Comparing to other fields
Quite often, in a set modifier, we will want to compare the field to be modified to
the values in a different field. There are a number of different options, and they
are discussed in the upcoming sections.

Chapter 5

[269]

Direct field comparison
We have seen this already, but it is acceptable for the set comparison to be directly
against another field. For example:

Sum({<Year=DI.Year>} LineValue)

We can use set arithmetic on these like this:

Sum({<Year=Year+DI.Year>} LineValue)

We must recall that the set of values in the comparison field (in this case,
DI.Year) is only the selected values—not possible values.

Using Concat with Dollar-sign Expansion
One way that we can get over the limitation of only seeing selected values in
the other field is to use the Concat function along with Dollar-sign Expansion
to derive an element value list, for example:

Sum({<Year={$(=Concat(Distinct DI.Year,','))}>} LineValue)

This might expand to something like this:

Sum({<Year={2011,2012,2013}>} LineValue)

With text values, we might need to make use of the Chr(39) function, which returns
a single quote, to derive the correct list:

Sum({<Country={'$(=Concat(Distinct DI.Cntr,Chr(39)&','&Chr(39)))'}>}
LineValue)

This might expand to something like the following:

Sum({<Country={'France','Germany','Ireland','USA'}>} LineValue)

Using the P and E element functions
The P and E functions, which can only be used in a set modifier expression, will
return a set of either the possible or excluded values. As they are functions, they
can themselves accept a set identifier and modifier. We can also specify which field
we want to return the set of values for. If left out, the field that we are modifying
will be returned.

Advanced Expressions

[270]

Let's look at some examples. First, if we perhaps want to modify the Year field with
the years that are selected in a particular bookmark, use:

Sum({<Year=P({BM01} Year)>} LineValue)

What if we want to modify the Year field with all of the values in the DI.Year field:

Sum({<Year=P({$} DI.Year)>} LineValue)

Otherwise, to get all of the values in the DI.Year field that are not selected:

Sum({<Year=E({$} DI.Year)>} LineValue)

Set Analysis with Alternate States
When using Alternate States in a QlikView document, we can now add additional
complexity to calculations. The syntax is quite straightforward though.

Using Alternate States as identifiers
When we want to access the values in an Alternate State, we can simply add the
Alternate State name as the set identifier:

Sum({State1} LineValue)

Of course, all of the usual set arithmetic is applicable:

Sum({$*State1} LineValue)

Comparing fields between states
We can also modify a field in a set expression using the set of values from a field in
another state. The syntax uses the state name, a double-colon (::), and the name of
the field. For example:

Sum({State1<Year=$::Year, Month=$::Month} LineValue)

Calculating vertically
One of the most powerful features in QlikView is the ability to create vertical
calculations in charts. We normally calculate values horizontally, where all values
are in reference to the dimensions in the chart. It is a very important feature for us
to also make vertical calculations across those horizontal numbers. For example, we
might want to know what the total of all our calculations is so that we can calculate
a ratio.

Chapter 5

[271]

We might want to know the average, or the standard deviation, to draw a line
in a chart. We might want to accumulate just the last four results to calculate a
rolling average.

Using inter-record and range functions
There are several functions that allow us to compare between different records in a
chart. Some work in all charts, but others are specific to a particular chart type, such
as a pivot table. In the graphical charts (Bar, Pie, and so on), we should imagine their
Straight Table equivalent to understand how these functions will work.

The main functions that we can use here are listed in the following table:

Function Description
Above This allows us to access the values in the chart above the

current row
Below Like Above, we get only access to the values below the

current row
Before This is used in a pivot table to access the values before the

current column
After Again, this is used in a pivot table to get access to the values

after the current column
Top This gives us access to the value in the first row of the chart
Bottom This gives us access to the value in the last row of the chart
First In a pivot table, this gives us access to the value in the first

column of the chart
Last This gives us the value in the last column in a pivot table
RowNo This tells us the number of the current row in the chart
ColumnNo In a pivot table, this tells us the number of the current column
NoOfRows This tells us how many rows there are in the chart
NoOfColumns In a pivot table, this tells us the number of columns

The default for the Above, Below, Before, After, Top, Bottom, First, and Last
functions are to just return one value that will be, as you would expect, the value in
the direction stated in the name of the function. Consider the following example:

Above(Sum(LineValue))

This will give us the value of Sum(LineValue) in the row directly above it.

Advanced Expressions

[272]

These functions also take additional, optional parameters. The second parameter will
accept an offset value, defaulting to 1, indicating how many rows above we want to
take the value. So, consider the following example:

Above(Sum(LineValue),2)

This will give us the value two rows above. In fact, we can actually specify 0 as the
offset and this will just give us the current row.

The third optional parameter, which defaults to 1, will specify how many row values
we want to return. Consider the following example:

Above(Sum(LineValue),0,4)

This will give us four values, starting with the current row. Now, QlikView cannot
handle multiple values like this, and if we try to use this in a chart, it will return
null. This is where we need to use the range functions, which will handle a range of
values like this. There are several range functions, such as RangeSum, RangeCount,
and RangeAvg, that are designed for this purpose. So, if we want the average of the
four values above, we would do the following:

RangeAvg(Above(Sum(LineValue),0,4))

This will give us, if the dimension in this chart were in months, a four-month
moving average:

Chapter 5

[273]

If we include the RowNo function to tell us what row we are on, we can calculate a
cumulative value:

RangeAvg(Above(Sum(LineValue),0,RowNo()))

This might be used in, say, a Pareto analysis:

Applying the Total qualifier
By default, of course, expressions in charts will be calculated with respect to the
dimensions in the chart. The Sum calculation on the USA row will only calculate
for values that are associated with the USA. This is exactly what we will expect.

Sometimes, we will want to override this behavior so that we can create a calculation
that ignores the dimensions in the chart. For example, we might want to calculate
the percentage of the current value versus the total. When we add the Total qualifier
into our expression, then the dimensions will be ignored and the expression will be
calculated for the whole chart.

Advanced Expressions

[274]

For example, suppose that we have a chart that has the following expression:

Sum(LineValue)

Now, we add a second expression with the Total qualifier:

Sum(Total LineValue)

We can see the effect of the Total qualifier:

We can see that the dimensions in the chart have been ignored and the same total
value has been calculated on each row. We can then change this to divide one by
the other:

Sum(LineValue)/Sum(Total LineValue)

We will get a percentage calculated:

Chapter 5

[275]

Now, if we were to add a second dimension to this chart, we would get the percentage
of each row in reference to the total as before. However, what if we wanted to see the
percentage of the second dimension in reference to the first dimension's total? In this
case, we can add a modifier to the Total qualifier to indicate that it should not ignore
some dimensions:

Sum(LineValue)/Sum(Total<Region>LineValue)

Now, only the second dimension is ignored:

Creating advanced aggregations with Aggr
QlikView has a fantastic chart engine. It is no surprise that we can get additional
access to this chart engine, inside or outside of a chart, so as to create more advanced
calculations. The Aggr function allows us to create a virtual chart—we can imagine it
like a Straight Table—and then, we can do something with the set of values that are
returned, that is, the expression column in our imaginary Straight Table.

Like a chart, the Aggr function takes an expression as a parameter. It also takes one
or more dimensions. It then calculates the expression against the dimensions and
returns a set of the results that we generally use in another aggregation function
such as Sum, Avg, Max, Stdev, and so on. For example, suppose we were to perform
the following Aggr function:

Aggr(Sum(OrderCounter), Country)

Advanced Expressions

[276]

Then, we can imagine the virtual Straight Table that this will create:

We might then want to calculate the average of these values:

Avg(Aggr(Sum(OrderCounter), Country))

When an Aggr function is used within a chart, its context is set by the dimensions of
the chart. This means that on each row of the chart, the Aggr function will only have
access to the values that are related to the dimension values for that row. For example,
if we want to use the Aggr above in a chart that contains the Country dimension, we
will need to add the Total qualifier:

Avg(Total Aggr(Sum(OrderCounter), Country))

If we didn't, the calculation will respect the dimensionality of the chart and just give
us the sum of the OrderCounter field on each row:

Chapter 5

[277]

There is an interesting issue present in this table. The average of 1,198.2
does not appear to be correct! The average should be 1,331.3. However,
if we turn off the Supress Zero option for the chart, we will find that
there is another blank value, Country! If we include this in the average
calculation, then we will get 1,198.2 and this is what Aggr is doing.
We can exclude the blank value by using a bit of Set Analysis:

Avg(Total Aggr(Sum({<Country={*}>} OrderCounter),
Country))

Using Aggr to calculate a control chart
Statistical control charts were first proposed by Walter A. Shewhart, a statistician
working for Bell Laboratories in the 1920s. They take into consideration that variation
is normal in a process and that we should only be concerned with variation outside
control limits.

A control chart will often use a combination and a mean of a range of values from a
particular period to compare to another period. For example, we might say that we
will treat 2012 as a sample for the deviation of our sales figures and then we want to
see the trend of our sales figures in 2014.

To do this, we will have to have a calculation of the mean value that includes a Set
Analysis statement to limit to the correct period:

Avg({$<Year={2012}>} Total Aggr(Sum({$<Year={2012}>} LineValue),
YearMonth))

Note that the Set Analysis expression needs to be contained in both the
Aggr expressions and in the aggregation function that we use Aggr with.

We can add the upper control value for the control chart:

Avg({$<Year={2012}>} Total Aggr(Sum({$<Year={2012}>} LineValue),
YearMonth))
+
2*Stdev({$<Year={2012}>} Total Aggr(Sum({$<Year={2012}>} LineValue),
YearMonth))

We can add the lower control as well:

Avg({$<Year={2012}>} Total Aggr(Sum({$<Year={2012}>} LineValue),
YearMonth))
-
2*Stdev({$<Year={2012}>} Total Aggr(Sum({$<Year={2012}>} LineValue),
YearMonth))

Advanced Expressions

[278]

Now we should have a chart that allows us to look at different year's performance
versus the 2012 controls:

Calculated dimensions
Another use that we can put the Aggr function to is to create calculated dimension.
Before we had dimension limitations in charts, this was the only way that we can
limit some charts to, say, the top 5. In fact, we still need to turn to this to calculate
the top x dimension values in pivot tables. For example, if we want to have the
top 5 customers, we need to add a calculated dimension of the following:

=If(Aggr(Rank(Sum(LineValue)), Customer)<=5, Customer, Null())

We should also set the Supress When Value is Null option for this dimension.
We can also add a second dimension such as Year to the chart:

Chapter 5

[279]

This is a really interesting thing because it is using the calculated virtual chart to
provide the values for the dimension, but knows how the dimension values are
associated to the data so that it can correctly calculate the totals.

No to nodistinct
The Aggr function has as an optional clause, that is, the possibility of stating that the
aggregation will be either distinct or nodistinct.

The default option is distinct, and as such, is rarely ever stated. In this default
operation, the aggregation will only produce distinct results for every combination
of dimensions—just as you would expect from a normal chart or straight table.

The nodistinct option only makes sense within a chart, one that has more
dimensions than are in the Aggr statement. In this case, the granularity of the chart
is lower than the granularity of Aggr, and therefore, QlikView will only calculate
that Aggr for the first occurrence of lower granularity dimensions and will return
null for the other rows. If we specify nodistinct, the same result will be calculated
across all of the lower granularity dimensions.

This can be difficult to understand without seeing an example, so let's look at a
common use case for this option. We will start with a dataset:

ProductSales:
Load * Inline [
Product, Territory, Year, Sales
Product A, Territory A, 2013, 100
Product B, Territory A, 2013, 110
Product A, Territory B, 2013, 120
Product B, Territory B, 2013, 130
Product A, Territory A, 2014, 140
Product B, Territory A, 2014, 150
Product A, Territory B, 2014, 160
Product B, Territory B, 2014, 170
];

We will build a report from this data using a pivot table:

Advanced Expressions

[280]

Now, we want to bring the value in the Total column into a new column under each
year, perhaps to calculate a percentage for each year. We might think that, because
the total is the sum for each Product and Territory, we might use an Aggr in the
following manner:

Sum(Aggr(Sum(Sales), Product, Territory))

However, as stated previously, because the chart includes an additional dimension
(Year) than Aggr, the expression will only be calculated for the first occurrence of
each of the lower granularity dimensions (in this case, for Year = 2013):

The commonly suggested fix for this is to use Aggr without Sum and with nodistinct
as shown:

Aggr(NoDistinct Sum(Sales), Product, Territory)

This will allow the Aggr expression to be calculated across all the Year dimension
values, and at first, it will appear to solve the problem:

The problem occurs when we decide to have a total row on this chart:

As there is no aggregation function surrounding Aggr, it does not total correctly
at the Product or Territory dimensions. We can't add an aggregation function,
such as Sum, because it will break one of the other totals.

Chapter 5

[281]

However, there is something different that we can do; something that doesn't involve
Aggr at all! We can use our old friend Total:

Sum(Total<Product, Territory> Sales)

This will calculate correctly at all the levels:

There might be other use cases for using a nodistinct clause in Aggr, but they should
be reviewed to see whether a simpler Total function will work instead.

Summary
This has been a really technical chapter and a very important one on the road to
QlikView mastery.

We reviewed some very important concepts that we need to know before we can
take on advanced expressions. We had an in-depth look at searching in QlikView,
we reviewed bookmarks, we looked at how we use variables, and then discussed
how we limit calculations.

Building on these basics, we delved into Dollar-sign Expansion. This feature is used
in so many areas, especially Set Analysis, that we really need to have a good grasp
of its use.

The Using advanced Set Analysis section showed how we can make use of one of
QlikView's most powerful features. This is a feature that most QlikView developers
will use in most applications.

Finally, we looked at the area of calculating vertically and discussed important
functions such as the inter-record functions, the Total qualifier, and last but very
much not least, the Aggr function. We now know that the Aggr function is extremely
useful, but we don't need to apply it in all circumstances where we have vertical
calculations.

In the next chapter, we'll deep dive into the QlikView script and will look at various
advanced techniques needed to load data most effectively into QlikView.

Advanced Scripting
"In my opinion, the vast majority of scripts written … are not very original, well-
written, or interesting. It has always been that way, and I think it always will be."

 — Viggo Mortensen

In anything more than the simplest of QlikView applications, the script is where
we spend a very large percentage of our development time.

When we discussed the performance tuning of our applications (Chapter 1,
Performance Tuning and Scalability), we discussed that almost all of the effort to
make our applications more efficient and to consume less memory will be made
in the script. Even when we tune expressions in the frontend, then this is more
than likely going to be supported by script work.

All data modeling work is going to be in the script. Of course, implementing an
ETL process is something that we do in the script. We can use the script to simplify
advanced expressions.

Almost everything we discussed in this book so far is either directly script-related
or directly influenced by what we do in the script. Therefore, to truly be a QlikView
master, you need to master the QlikView script.

This chapter is all about learning great ways of manipulating data in the script.
If you can master these methods, then you are well on your way to mastery of
the whole product.

These are the topics we'll cover in this chapter:

• Counting records
• Loading data quickly

Advanced Scripting

[284]

• Applying variables and the Dollar-sign Expansion in the script
• Using control structures
• Examining advanced Table File Wizard options
• Looking at data from different directions
• Reusing the code

Reviewing the basic concepts
We will have a quick look at some of the basic concepts that we should be aware
of when first starting to load data. Anyone who has done basic QlikView training
should be familiar with the concepts here, but it is worth reviewing them.

Using Table Files Wizard
We don't have to use Table Files Wizard to load data from file sources, but it is very
useful to help us generate the necessary script to load the data correctly. We have
some buttons in the script editor that give us access to Table Files Wizard:

These buttons are listed in the following table:

Button Description
Table Files This button opens a standard File Open dialog. Once a file is

selected, the main Table Files Wizard will open with an appropriate
file type, based on QlikView's interpretation of the file's content,
already selected for us.

QlikView File This won't actually open the wizard because it only allows a
QlikView QVW file to be selected. It will insert a BINARY statement
at the beginning of the active tab in the script. We need to be careful
here because BINARY, if used, must be the very first statement in the
script, so it should be on the very first tab in the script.

Web Files This allows us to enter a web URI to point at a file source located
on the Internet. This can be HTML, but can also be any of the other
supported file types.

Chapter 6

[285]

Button Description
Field Data This allows you to point at a field that you have already loaded into

the script (therefore, you must have run the script at least once) and
parse the contents of the field using a delimiter or fixed record rules.

Some of us might have (accidentally or on purpose) clicked on the Back button in the
first screen that appears on Table Files Wizard and discovered the actual first page,
which corresponds to three of the buttons:

Using relative paths
When we load a file in QlikView, we can either use an absolute or a relative path.

When discussing file paths, an absolute path means the full path to a file starting with
either a drive letter or a UNC path, for example, C:\QVDocuments\Finance\Sources\
Budget.xls or \\QVServer\QVDocuments\Finance\Sources\Budget.xls.

Advanced Scripting

[286]

A relative path means that the path is expressed relative to another path. The default
start path is the location of the QlikView QVW file. So, if we have our QVW in:

C:\QVDocuments\Finance\Apps

Then, the relative path to the source file is:

..\Sources\Budget.xls

The . and .. are relative path indicators that have been around
since the earliest Unix days. The . indicates the current folder
and .. indicates the parent folder. You can concatenate several
of them, so ..\.. indicates the parent of the parent folder.

We can also specify an alternate start path using the Directory statement. So, if we
issue this command:

Directory 'C:\QVDocuments\Finance';

Then, the relative path the source file becomes:

Sources\Budget.xls

Alternatively, you can also use:

.\Sources\Budget.xls

If we turn on the Relative Paths checkbox on the Data tab in the script editor, then
Table Files Wizard will return the path as a relative path, relative to the document
location. It will also automatically add a Directory statement like this:

Directory;

A Directory statement without specifying a path is actually superfluous, as it means
to just use the default path—the location of the QVW file. Therefore, we can feel free
to delete this statement if we don't want to use it.

The main reason why it is preferable to use relative paths instead of absolute paths
is transportability—we can move a folder system from one server (for example,
a development server) to another (for example, a preproduction system) and all
of the paths should still work without having to make any edits to the script.

Delimited files
If the Wizard detects that the file content is just text, it usually guesses that we are
dealing with a delimited file and will have a guess at what the delimiter is from
the data:

Chapter 6

[287]

It is often quite good at detecting some of these settings, especially the Character Set
value, but we might need to tweak these sometimes. Usually, the tweak is just setting
the Labels option from None to Embedded Labels.

The usual options in the Labels section that we need to be concerned
with are either None or Embedded Labels. The third option, Explicit, is
only relevant for certain file types, specifically Data Interchange Format
(DIF), which includes a header section that contains explicit labels.

If the first line of the file contains the labels, then we should choose the Embedded
Labels option. If we choose None, then the fields will be named @1, @2, @3, and so
forth. We can, of course, rename these fields like this:

LOAD
 @1 as SalesPerson,
 @2 as Company,
 @3 as [Sales Value],
 @4 as [Number of Orders]
FROM
[..\Sources\SalesReport.csv]
(txt, utf8, no labels, comment is #, delimiter is ',', msq);

To facilitate this, the wizard allows us to change the name in the data display grid,
and then it will generate the As statement for us:

Advanced Scripting

[288]

Besides changing the Labels options, we might also add an entry under Comment.
Here, we can define a value that might appear at the beginning of a line in the text
file (# or // are common), which indicates that this line is a comment and we don't
need to load it. Rows beginning with this text will be ignored.

Fixed width files
When the data source has been outputted by a reporting system, it is quite common
that the data is in a fixed width format. Every value in each report column takes up
the same amount of space, with spaces added wherever necessary to pad the values
out to fit. Consider the following example:

Country Sales $ No. Orders
Germany 92,981.20 29
USA 26,265.16 16
France 25,002.56 15

To load this in QlikView, we just need to tell the wizard exactly the width each row
takes up, and this can be done by a click of the mouse:

Chapter 6

[289]

The field names that are generated by the wizard contain the position of the first
character and the last character separated by a colon:

LOAD @1:12,
 @13:24,
 @25:n
FROM
[..\Sources\CountryReport.txt]
(fix, utf8);

The last field will usually have n specified as the ending character. This indicates the
end of line position.

We are free to modify these manually, if we need to, as well as adding field aliases.
We can even have fixed positions overlapping if it makes sense to do so:

LOAD [@1:20] As Field1,
 [@8:24] As Field2,
 [@16:n] As Field3

XML files
The wizard is very good at dealing with XML data, from simple tables to more
complex relationships. For example, we can have an XML file with data like this:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<CountryCity>
<Country name="USA">
 <City>New York</City>
 <City>Dallas</City>
 <City>Boston</City>
</Country>
<Country name="Austria">
 <City>Graz</City>
<City>Salzburg</City>
</Country>
<Country name="Belgium">
 <City>Bruxelles</City>
 <City>Charleroi</City>
</Country>
</CountryCity>

We can see that the previous data includes values in both tags and elements and
also that there is a hierarchy of data between country and city.

Advanced Scripting

[290]

When we load this data into Table Files Wizard, the tool automatically recognizes the
hierarchies as different tables:

When we click on Finish in the wizard, it will generate the code to load each of the
tables, with an automatically generated ID field to associate them:

// Start of [CountryCity.xml] LOAD statements
City:
LOAD City%Table,
 %Key_Country_DDD45FBB422C070A
// Key to parent table: CountryCity/Country
FROM [..\Sources\CountryCity.xml]
(XmlSimple, Table is [CountryCity/Country/City]);

Country:
LOAD name,
 %Key_Country_DDD45FBB422C070A
// Key for this table: CountryCity/Country
FROM [..\Sources\CountryCity.xml]
(XmlSimple, Table is [CountryCity/Country]);
// End of [CountryCity.xml] LOAD statements

Of course, we should probably think about joining these tables together and then
dropping the key field.

Chapter 6

[291]

HTML files
QlikView can handle most HTML files that have tables defined (sometimes, it has
difficulty with XHTML). You can either connect to a file locally or a web URL.

For example, if you want to grab the currency conversion rates from the front page
of http://www.xe.com/, enter the link as follows:

The wizard will connect to the website and retrieve information about all of the
tables on the page. In this case, there is just one:

http://www.xe.com/

Advanced Scripting

[292]

In other cases, you might need to click through the list of tables offered, @1, @2, @3,
and so forth, and use the preview window to identify the correct one. The script
might look like this:

LOAD [Auto-refresh 15x 0 : 59],
 [Auto-refresh 15x 0 : 591],
 USD,
 EUR,
 GBP,
 INR,
 AUD,
 CAD,
 ZAR,
 NZD,
 JPY
FROM
[http://www.xe.com/]
(html, codepage is 1252, embedded labels, table is @1);

It could be that the field name that is identified doesn't actually work when you try
the reload (as in this case). You could try playing with the spacing—this works here:

LOAD [Auto-refresh15x0 : 59],
 [Auto-refresh15x0 : 591],

You can replace the fields with just a *:

LOAD *
FROM
[http://www.xe.com]
(html, codepage is 1252, embedded labels, table is @1);

QVD/QVX files
When it comes to QVD or QVX files, we don't get to modify any settings in the
wizard to change the way the file is handled. Setting such as Embedded Labels,
Delimiter, Header Size, and so forth, are meaningless when loading a QVD, as all
of the information that is needed to interpret the file is already embedded in the file.

Connecting to databases
QlikView can connect to almost every on-premise database system in the world.
In fact, the only ones that we might have trouble with are very archaic ones that
do not have open drivers.

Chapter 6

[293]

QlikView can use one of the three different driver types to connect to databases:

Driver type Description
ODBC An Open Database Connectivity driver allows us to connect to the

majority of the world's database systems because most of the world's
database vendors will either issue a driver for free, along with their
client tools, or will have licenses for a third party to create a driver.
ODBC drivers are configured at the operating system level and their
settings are stored in the system registry. Therefore, if documents are
moved from development to test/production systems, we need to
ensure that the same driver is configured on all systems.

OLEDB OLEDB is Microsoft's standard for connecting programmatically to
databases. It is quite different in implementation from ODBC, but
we don't really need to worry about that. Most of the larger database
vendors will have an OLEDB driver available as well as the ODBC one.
The OLEDB option tends to be faster, especially for Microsoft databases.
The configuration information for an OLEDB connection is stored
within the QlikView document's CONNECT statement, so it can be a little
more portable; we just need to ensure that the drivers are installed on
every server that needs them.

Custom A custom driver can be written, using QlikView's APIs, to allow
connections to many more systems. For example, Qlik has custom
drivers available for both SAP and SalesForce.com—systems that
we cannot otherwise connect directly to. They also have a custom
driver that talks to their own server management service and can read
information from that into QlikView. In theory, a custom connector can
be built for almost any database system that we can think of.

Using the Connect button
When we look at the Data tab in the script editor, we see a dropdown that allows us
to select the driver type that we want to use:

Advanced Scripting

[294]

Once we have selected the driver type that we want to use, we click on the Connect…
button, which will open a dialog that is appropriate to the selected driver. For ODBC,
we don't need to provide any of the connection detail, just the username and password,
and the dialog will look like this:

The connection dialog for OLEDB is different because we need to provide connection
information. The OLEDB dialog is one that many developers will be familiar with
because it comes from the operating system, not from QlikView. We first need to select
the correct database driver, and then we can provide connection-specific information.
For example, if we used a SQL Server connection, it might look like this:

Chapter 6

[295]

Any custom connector will have its own dialog. Some have no dialogs at all!

Understanding the Connect To statement
The purpose of all of the dialogs is to generate a Connect To statement. This is the
statement that tells QlikView how to connect to the driver that is being used.

The Connect To statement is usually preceded by an indication of the connection
type: ODBC, OLEDB, or CUSTOM. If the connection type is omitted, then ODBC is
assumed.

Here is an example ODBC Connect To statement:

ODBC CONNECT TO QVData_ODBC (XUserId is IMcKXZFMCC, XPassword is
GRdHfABOQDbKWZJFeE);

Advanced Scripting

[296]

We can see that all we need is the ODBC name because the rest of the information
necessary to make the connection is already configured within the ODBC connection.
We have provided the username and password in the dialog box and QlikView will
encrypt them so that casual viewers will not be able to see them.

Compare the ODBC Connect To statement to an OLEDB Connect To statement:

OLEDB CONNECT TO [Provider=SQLNCLI11.1;Integrated
Security=SSPI;Persist Security Info=False;User ID="";Initial
Catalog=QVData;Data Source=QVENTSQLWH;Use Procedure for
Prepare=1;Auto Translate=True;Packet Size=4096;Workstation
ID=SRVR1;Initial File Name="";Use Encryption for Data=False;Tag
with column collation when possible=False;MARS
Connection=False;DataTypeCompatibility=0;Trust Server
Certificate=False;Application Intent=READWRITE];

In this case, all of the information necessary to make the connection will be listed in
the Connect string. This is similar to a Custom Connect To statement:

CUSTOM CONNECT TO
"Provider=QvsAdminDataProvider.dll;host=localhost;XUserId=HONSdKD;
XPassword=bfAXSUC;";

Explaining the Force 32 Bit option
Prior to QlikView Version 10, if your database vendor only supplied a 32-bit version
of its driver, you can only connect to it with a 32-bit version of QlikView. This causes
a lot of problems for QlikView customers running 64-bit server versions that could
not perform automatic reloads without having to run a 32-bit QlikView desktop
from the command line.

In QlikView Version 10.0, the Force 32 Bit option was introduced to overcome this
problem. Now, along with specifying the connection string, we can also specify
whether a 32- or 64-bit connection should be used in the Connect To statement:

ODBC CONNECT32 TO [QVData] (XUserId is WAKVcARMNLacWYB);

QlikView actually calls separate processes to open the connections and run queries.
They are QVConnect32.exe and QVConnect64.exe, which are 32-bit and 64-bit
applications, respectively. If we call a Connect To or Connect64 To statement
using a 64-bit version of QlikView, QVConnect64.exe will be executed. If we call
Connect32 To, then QVConnect32.exe will be executed. QlikView running on a
32-bit system can only execute QVConnect32.exe.

Chapter 6

[297]

The Force 32 Bit option in the Data tab will mean that clicking on the Connect
button will open 32-bit versions of the dialog that have access to 32-bit drivers.
These dialogs will also generate a Connect32 To statement instead of just a
Connect To statement.

The Select wizard
Once we have created a connection of any type, its details are cached in the
document. This allows us to access the Select button and retrieve information
about the tables and views in our database:

This wizard is a very useful tool because it allows us to interrogate the data structures
in the database, preview the data that these tables and views contained, and generate
appropriate SQL to retrieve the data.

Advanced Scripting

[298]

The default option is for the wizard to generate a very simple Select * query to
retrieve the data:

We can also select specific fields from the list of fields to create a more specific,
yet still quite simple, query:

We can also turn on the (highly recommended) Preceding Load checkbox. This
places a QlikView Load statement above the SQL statement. This preceding Load
statement allows us to apply QlikView functions to the data as we are loading it
from the database. A SQL statement with a preceding Load statement might look
like this:

LOAD OrderID,
OrderDate,
CustomerID,
EmployeeID,
//Freight,
 "LineNo",

Chapter 6

[299]

ProductID,
 Quantity,
SalesPrice,
LineValue,
LineCost;
SQL SELECT *
FROM QVTraining.dbo."Order_Fact";

We might note that even though the SQL query is a very simple Select *, we still
get the full field list in the preceding Load statement.

Note the piece of script that the Freight field is commented out. Even though
there will be a Freight field loaded from the database, if we do not load it in the
preceding Load statement, then the field will not make it into the final data model.

Counting records
There are two main functions used to count records during load: RecNo() and
RowNo(). After the data has been loaded, we can use another couple of interesting
functions: FieldValueCount() and NoOfRows(). There is also a useful function,
NoOfFields(), that tells us how many columns there are in a table.

RecNo
The RecNo() function gives us the number of the rows in the source table. While the
output of the RecNo function will always be guaranteed to be ordered, there might
be gaps in the sequence because rows may be excluded due to a where clause, for
example, this load statement:

Table1:
Load *, RecNo() As RecNo1
Where Field1<>'C';
Load * Inline [
Field1
A
B
C
D
];

Advanced Scripting

[300]

Only three rows will be loaded from the source because the row with C as a value is
excluded by the Where clause. This results in this table:

Field1 RecNo1
A 1
B 2
D 4

The value 3 is missing in the sequence as the third row was not loaded.

It should also be noted that an additional load from a new source, even if it is
concatenating to the same table, will have the numeric sequence restart at 1.

RowNo
The RowNo() function gives us the number of rows in the loaded in-memory table.
There should be no gaps in the sequence because the next number is only assigned
when the row is actually loaded. For example, if we replace the RecNo() function in
the script in the previous example with RowNo(), we will get this result:

Field1 RowNo1
A 1
B 2
D 3

We have to watch out for one aspect of the RowNo() function when using the preceding
loads. If we modified the preceding code like this:

Table1:
Load *, RowNo() As RowNo1
Where Field1<>'C';
Load *, RowNo() As RowNo2 Inline [
Field1
A
B
C
D
];

Chapter 6

[301]

We will find that RowNo1 will have values as expected; however, RowNo2 will be all
zeroes. This is because the RowNo() function only returns correctly in the top loader
of a preceding load. It must be like this because each preceding load can have its own
Where clause that can modify the number of rows loaded. Only at the topmost load
do we actually know that a row is loaded.

RowNo() also differs from RecNo() because as it is the count of the number of rows
actually loaded, additional concatenation of rows from different data sources does
not reset the counter. So, if we had a couple of loads like this:

Table:
Load *, RecNo() As RecNo, RowNo() As RowNo
Inline [
Field
A
B
C
D
];

Load *, RecNo() As RecNo, RowNo() As RowNo
Where Field <> 'G';
Load *
Inline [
Field
E
F
G
H
];

The result would look like this:

Field RecNo RowNo
A 1 1
B 2 2
C 3 3
D 4 4
E 1 5
F 2 6
H 4 7

The RecNo() function as reset after the first load and skips the number for the excluded
rows. The RowNo() sequence is unaffected by the fact of the second load.

Advanced Scripting

[302]

FieldValueCount
The FieldValueCount function will return the number of values in a field. Be careful
that it is not the number of rows in a table that contains the field, but it is the number
of unique values in the field. The function takes the name of an existing field as a
parameter; however, it needs to be passed as a string:

Let x=FieldValueCount('Field1');

NoOfRows
The NoOfRows function returns the actual number of rows that have been loaded in a
table. As with the previous function, the table name is passed as a string value:

Let x=NoOfRows('Table1');

This function can actually be used inline during a table load. Logically, it will return
RowNo()-1.

NoOfColumns
The NoOfColumns function is similar to the previous one except that it returns the
number of columns. As before, we pass the table name as a string:

Let x=NoOfColumns('Table1');

A use case for both of these table functions is to check whether the expected number
of rows and columns are in a table after Join.

Loading data quickly
In Chapter 3, Best Practices for Loading Data, we discussed fast loading using incremental
load and binary load.

The fastest way of loading data into QlikView is to use the Binary statement. Binary
will load the whole data table, symbol tables, and other data from one QVW file
(Qlik Sense can binary load from either a QVW or QVF file).

The fastest way of getting a single table into QlikView is from an optimized load QVD
because it contains a data table and symbol table.

In this section, we will explore some other options that we need to be aware of to load
data quickly.

Chapter 6

[303]

Understanding compression settings
This might not fit exactly into a chapter on script, but it is something that we need to
be aware of and because the script defines the data size, the compression setting will
define the on-disk size of the Qlik file. By default, QlikView will compress a QVW
file when saving it using a high compression setting. We can change this so that
medium compression is used, or we can turn off compression all together.

The main difference, obviously, is the on-disk size of the resultant file. We need to
think about the algorithm that is being used to create the compression. It will require
additional time for the file to be compressed. For smaller QVW files, this is not really
a consideration. However, as the files begin to grow more than 1 GB or more, the
compression takes longer and longer and this might become an issue for timings of
reloads. For example, a 5 GB application might, depending on the hardware, take
5 minutes or so to compress and save. The same document, when saved without
compression, might only take seconds. This is especially a consideration when
saving to a network drive.

To change the settings for a particular QlikView document, navigate to Settings |
Document Properties | General | Save Format:

Advanced Scripting

[304]

We can also specify this setting at a user level for the creation of new documents,
in Settings | User Preferences | Save:

If disk space is not an issue, then there is probably no real benefit in allowing
compression for larger applications. The applications will save quicker without it.
For smaller applications, there is little difference in time.

Obviously, if we are binary loading the data from a QVW that has been compressed,
then there will be that extra step of having to decompress the data. The fastest way of
getting data into QlikView is by binary loading from an uncompressed QVW on very
fast hardware—solid state disks are the best. We always need to balance the speed
requirements with the disk space overhead.

Optimal loading from QVD
We have already discussed how the quickest way of loading a table of data is
from a QVD file. This load will be listed in the script execution dialog box as
(qvd optimized):

If we perform any additional calculations on this QVD data as it is being loaded—
for example, adding additional fields based on QlikView functions, performing most
where clauses, and so forth—then the optimized load will be lost and a normal, row-
by-row, data load processing will be performed. Of course, if the QVD files are local to
your reload engine (either the server or desktop), then that reload will still be quite fast.

Chapter 6

[305]

There are a few things that we can do when loading QVDs that make sure that as
optimal a load as possible will happen.

Using an Exists clause
The only things that we can do to a QVD load that will retain the optimization are:

• Rename fields with the As statement
• Use a Where Exists or Where Not Exists clause

The second option here is interesting because we know that a normal Where clause
will cause a nonoptimized load. Therefore, if we can think of a way to use existing
data, or perform a load of a temporary table that we can use with the Exists clause
to keep the optimization.

For example, if we are loading some sales order detail lines into a data model in
which we have already restricted the sales order headers, we can use an Exists
clause on the ID field that associates them:

SalesOrderHeader:
Load *
From SalesOrderHeader.qvd (qvd)
Where Match(Year,2013,2014);

SalesOrderLine:
Load *
From SalesOrderLine.qvd (qvd)
Where Exists(OrderID);

In fact, we can replace the Where clause in the header table by preloading the years
that we want in a temporary table:

TempYear:
Load
 2012+RowNo() As Year
AutoGenerate(2);

SalesOrderHeader:
Load *
From SalesOrderHeader.qvd (qvd)
Where Exists(Year);
//Where Match(Year,2013,2014);

SalesOrderLine:
Load *

Advanced Scripting

[306]

From SalesOrderLine.qvd (qvd)
Where Exists(OrderID);

Drop Table TempYear;

If we look at the script execution dialog, we will see that the QVDs are optimized
in loading:

Preloading fields into QVDs
Let's imagine a scenario where we want to load sales information from Sales.QVD
and then concatenate budget information from Budget.QVD. The script might look
like this:

Fact:
Load
 DateID,
 SalesPersonID,
 CustomerID,
 ProductID,
 SalesQty,
 SalesValue
From
 Sales.QVD (QVD);

Concatenate (Fact)
Load
 DateID,
 SalesPersonID,
 CustomerID,
 ProductID,
 BudgetQty,

Chapter 6

[307]

 BudgetValue
From
 Budget.QVD (QVD);

In this example, the Sales.QVD file will load optimized because we are not making
any changes to it. The Budget.QVD file will not load optimized because it is being
appended to the existing table and they do not have the same fields, so QlikView
has some work to do.

What happens here is that QlikView will initially load a data table and symbol tables
to accommodate the sales information. When we concatenate the budget information,
there might be some additional entries into the symbol table but there will be a
significant change to the data table, which will have to be widened to accommodate
the index pointers for new fields. This change will be barely noticeable on a load of
records measured in thousands, but if we have many millions of rows in one or both
of the QVDs, then the delay will be significant.

If we were to take a step back and assuming an ETL approach is in place, when
generating the QVDs, we should use the null() function to add the fields into the
Sales table from the Budget table and add the fields into the Budget table into
the Sales table, then both QVDs will load optimized. For example, in the
transformation script, we might have code like this:

Sales:
Load
 DateID,
 SalesPersonID,
 CustomerID,
 ProductID,
 SalesQty,
 SalesValue,
 Null() As BudgetQty,
 Null() As BudgetValue
From
 SalesSource.QVD (QVD);

Store Sales into Sales.QVD;
Drop Table Sales;

Budget:
Load
 DateID,
 SalesPersonID,
 CustomerID,

Advanced Scripting

[308]

 ProductID,
 BudgetQty,
 BudgetValue,
 Null() As SalesQty,
 Null() As SalesValue
From
 BudgetSource.QVD (QVD);

Store Budget into Budget.QVD;
Drop Table Budget;

Then, when loading into the final document we can do this:

Fact:
Load * From Sales.QVD;
Load * From Budget.QVD;

Both QVDs will load optimized.

Applying variables and the Dollar-sign
Expansion in the script
We had a good discussion in Chapter 5, Advanced Expressions, on how to use variables
with the Dollar-sign Expansion. Variables are so important to what we do in the script
that it is worth just briefly reviewing the topic from a script point of view.

Variables can be assigned in the script using either a Set or Let statement.

A Set statement will assign the text on the right-hand side of the statement to the
variable. A Let statement will try and evaluate the text on the right-hand side as
an expression and will assign the result of that evaluation (which might be null!)
to the variable. For example:

Set v1=1+1;

This will result in the v1 variable that contains the value 1+1. Consider the
following example:

Let v2=1+1;

This will result in the v2 variable that contains the value 2.

A variable can be used simply in assignment to other variables. For example:

Let v3=v2+1;

Chapter 6

[309]

The v3 variable will have the value 3 (2+1). Let's consider another example:

Let v4=v1+1;

This will not work! That is because v1 contains a string value, so a string plus a
number does not make sense. However, we can do this:

Let v4=v1&'+1';

Now, v4 will have the value 1+1+1.

Generally, we use variables by using the Dollar-sign Expansion. In this case, the
variables are wrapped in parentheses and preceded by the dollar sign. There is
a two-step execution where the contents of the variable are first expanded and
replace the dollar sign, and then, the expression is evaluated as if the value had
been typed there in the first place. For example:

Let v5=$(v1)+1;

In the first step, the value of v1, that is 1+1, will be expanded and will replace the
dollar sign:

Let v5=1+1+1;

In the second step, the expression is evaluated and the value of 3 is assigned to v5.
We have seen previously that we can watch this two-step process in action using
the central panel in the debug window:

Advanced Scripting

[310]

We need to be careful with this because there might be unintended consequences.
For example:

Let vToday=Today();
Let vYesterday=$(vToday)-1;

We might wonder why the vYesterday variable has a value of -0.9998411122145!
This makes sense if we think that the value of vToday is something like 8/25/2014
(August 25, 2014), so the second assignment will actually end up being:

Let vYesterday=8/25/2014-1;

A better way to assign this is:

Let vYesterday='$(vToday)'-1;

Note that if you are using dates like this, it is much better to assign
the numeric value of the date (for example, 41876—the number of
days since December 30, 1899) rather than the text representation
because we have to always be sure that the text value will parse
correctly whereas the numeric value is already parsed. Floor is a
useful function for this as it also removes any time portion.

The following approach is better:

Let vToday=Floor(Today());
Let vYesterday=$(vToday)-1;

If a variable is assigned a null value (either from a failed expression or using the
Null() function), then the variable will be removed (or not created!). This is useful
to tidy up variables at the end of the script.

Setting variables to null to remove them only applies to
variables created within the script execution—variables
that have been created in the document interfaces will
not be removed by setting them to null in the script.

Examining common usage
There are some common use cases of using variables that come up in many
applications, so it is worth examining them here.

Chapter 6

[311]

Holding dates
It is very useful to know which day of the week it is. There is a simple function,
Today(), that will return the date for today. However, does it really give today's
date? It depends! The function can take a parameter:

Parameter value Description
0 The date when the script was executed
1 The date at the time when the function is called
2 The date when the document was opened

It is interesting that many of us use this function without considering that the default
value is 2—the date when the document was opened. Depending on circumstances,
this might not be what we want at all! This is where it can be useful to assign the
result of the function to a variable:

Let vToday=Floor(Today(1));

By placing this call at the beginning of our script, we can then ensure that we are
always using the same date throughout the script.

We might also be interested in a timestamp, and the Now() function will give us this.
However, this function also has parameters that we need to be aware of.

Parameter value Description
0 The date/time of the previously finished reload
1 The date/time at the time when the function is called
2 The date/time when the document was opened

These are slightly different from the Today() function, and the default is also
different, which is 1, the time of the function call. We might need to be careful
of this because if it is included in a long loop, it will be recalculated many times.
It is a much better idea to calculate the value at the beginning of the script:

Let vNow=Num(Now(1));

As with the Floor() function for today, the Num() function will transform our
timestamp into a numeric value. However, we might not always want the value
in this format. We might want to have it in a particular format to use with
database queries:

Let vCurrentExecution=Timestamp(vNow, 'YYYYMMDD hh:mm:ss');

Orders:

Advanced Scripting

[312]

SQL SELECT OD.* FromvwOrderDetail OD
WHERE OD.TimeStamp>= '$(vPreviousExecution)'
AND OD.TimeStamp< '$(vCurrentExecution)';

Let vPreviousExecution=vCurrentExecution;

So, here, I use the TimeStamp() function to assign a format to the timestamp value.
I can then use this in a SQL query.

In this example, we also have a second variable, which we fill with the current
timestamp upon script completion. When the document is saved, we should expect
that this variable should be saved with it so that on the next reload, the query should
just get the delta change in the orders table. However, what about the very first
execution? How can we populate this value if it hasn't been populated before?

A part of the problem is that if a variable hasn't been populated, then it won't exist,
so we can't compare it to a value. What we can do, though, is Dollar-sign expand it.
If it doesn't exist, the expansion just returns an empty string. We can check the
length of this string to see whether it is blank:

If Len('$(vPreviousExecution)') = 0 Then
 // Set the variable to an arbitrary date in the past
 Let vPreviousExecution='19990101 00:00:00';
End If

Holding paths
We have discussed the uses of relative paths in loading and storing files. This is
a generally good idea but there are circumstances where you might need to have
absolute paths; for example, when using UNC paths for files, or if you might have
changed paths for different purposes.

In these circumstances, rather than relative paths, we will specify the majority of
the path using a variable. We might have this in our script:

Set vSourcePath='\\QVDataServer\SalesSource';
Set vQVDPath='\\QVServer\QVDPath';

Then, we will perform loads like this:

Sales:
LOAD *
FROM
[$(vSourcePath)\SalesReport.csv]
(txt, utf8, embedded labels, delimiter is ',', msq);
Store Sales into [$(vQVDPath)\Sales.qvd];

Chapter 6

[313]

If the initial assignment of variables was kept in a separate file, it could be shared
amongst several files using an include Dollar-sign Expansion:

$(Must_Include=PathVariables.qvs);

We use the Must_Include syntax here because the include must succeed for the
script execution to run successfully.

Examining variable values during reloads
We have seen already that we can examine a variable value in the lower-right panel of
the debug window. However, the debug window might not always be where we want
it to be when executing a script, especially long running scripts. There is a better way.

The Trace statement will echo whatever is typed after it, up to its semicolon statement
terminator, to both the script execution dialog and to the document log. As it is a
standard statement, we can include variables with the Dollar-sign Expansion and
expect their values to be echoed. For example:

Trace Previous Execution: $(vPreviousExecution);
Trace Current Execution: $(vCurrentExecution);

This will result in something similar to this Script Execution Progress dialog:

Advanced Scripting

[314]

If the Generate Logfile option is selected in the Document Properties, then the
Trace result will also be echoed in the logfile:

There is no real reason as to why we should not generate a
logfile. It saves a load of time in troubleshooting reload issues,
especially server executed reloads. If the option is turned on, a
file called QVWName.qvw.log is created in the same folder as
the QVW. If it is a server reload, the logfile is also copied into
the Distribution Services log folder for that task.

Nesting Dollar-sign Expansions
It is possible to nest one or more Dollar-sign Expansions. This allows us to create
some interesting functionality in scripts.

As an example, consider the variables used for path names. Imagine that we have a
separate set of paths to be tested from production. We can do something like this:

Set vTestOrProd='Test';
Set vServerTest='\\DataServerTest\Test\Files';
Set vServerProd='\\DataServer1\Production';
Set vSourcePath='$(vServer$(vTestOrProd))\Sources';
Set vQVDPath='$(vServer$(vTestOrProd))\Sources';

Chapter 6

[315]

We will see something like this in the Debugger window:

When we nest expansions like this, the inner expansions will be performed first.
In this example, the inner expansion sets the name of the variable for the outer
expansion.

This might look like a simplified test, but we can actually use something like this,
using include files and windows security, to allow only certain people to update
the script to start using production files!

Passing parameters to variables – macro
functions
We can make a variable calculation a little more intelligent by actually passing
parameters to it. This way, it can be like a pseudofunction.

When creating variables with parameters, we can only do so with the Set statement.
The Let statement doesn't make any sense here because it tries to evaluate it at the
time of assignment, so we can't pass a parameter.

Advanced Scripting

[316]

We create parameters by using a dollar sign with a number. We can add multiple
parameters; we just need to up the numeric sequence. For example:

Set vAdd=($1+$2);
Let vRes=$(vAdd(1,1));
Trace Result of add: $(vRes);

This will yield a result of 2. Not terribly complex.

As another example, how about if we wanted a function to format a 10-digit phone
number in the (nnn) nnn-nnnn format. We can write a variable like this:

Set vPhone='(' &Left($1,3) & ') ' & Mid($1,4,3) & '-' & Right($1,4);

Load Phone, $(vPhone(Phone)) As Formatted Inline [
Phone
2025551234
2125554321
];

This is a relatively straightforward calculation but we can have this as complex as we
like. Indeed, we can have several of such variables stored in an external file and then
include them.

Subroutines
A subroutine is used where we have, generally, a more complex requirement, and we
know that we are going to have to repeat it quite often.

A great example of using a subroutine that can be used in most implementations is
the repetitive task of storing a table to QVD and then dropping the table that we will
have in loader applications. We might implement it like this:

Sub StoreAndDrop(vTableName)

 Store [$(vTableName)] into [$(vQVDPath)\$(vTableName).qvd];
 Drop Table [$(vTableName)];

End Sub

Then, later in the script, we will call:

Call StoreAndDrop('TableName');

Chapter 6

[317]

Note that the subroutine must be loaded in the script before it is called. We can also
pass multiple parameters to the subroutine. The parameters become local variables in
the subroutine. These are not available outside the subroutine, but variables defined
outside the subroutine, global variables, are available.

Using control structures
Any basic development language will include some control structures to either
repeat the execution of particular tasks or change what task will happen next
based on conditions. QlikView is no different, so in this section we will examine
the various options.

Branching with conditional statements
It can be enormously important to be able to execute different sets of statements based
on different conditions. It gives us a lot of flexibility in implementing our solutions.

If … Then … ElseIf
If ... Then ... ElseIf is a fairly fundamental construct in many programming
languages. We test a condition, and if it is true, we execute one set of statements. If it
isn't true, then we can either execute a different set of statements or perform a new
test and keep going.

As an example, if we wanted to test whether a file exists before trying to load it:

If Alt(FileSize('c:\temp\Data.qvd'),0)>0 Then

 Data:
 Load *
 From c:\temp\Data.qvd (qvd);

End if

We use Alt here because the FileSize function
returns null if the file doesn't exist.

If, instead of not doing anything, we want to load a different file, then we might
do this:

If Alt(FileSize('c:\temp\Data1.qvd'),0)>0 Then

 Data:

Advanced Scripting

[318]

 Load *
 From c:\temp\Data1.qvd (qvd);

ELSE

 Data:
 Load *
 From c:\temp\Data2.qvd (qvd);

End if

Of course, we should really check whether this second file exists:

If Alt(FileSize('c:\temp\Data1.qvd'),0)>0 Then

 Data:
 Load *
 From c:\temp\Data1.qvd (qvd);

ELSEIF Alt(FileSize('c:\temp\Data2.qvd'),0)>0 Then

 Data:
 Load *
 From c:\temp\Data2.qvd (qvd);

ELSE

 Trace We have no files to load!!!;

End if

A note about conditional functions
There are several functions in QlikView that return a Boolean result. For example,
the YearToDate function accepts a date, and some other parameters and will return
true or false if that date is in the year-to-date. Unlike other languages, QlikView
does not actually have a Boolean type. Instead, Boolean functions will return an
integer value—0 for false and -1 for true. In fact, as far as any condition in QlikView
is concerned, 0 is always false and anything that is not 0 means true.

This means that there are several other functions that might not be considered
to be strictly conditional and can be used as conditional functions. Any function
that returns 0 as an indication of a failure to perform and a nonzero value when
it succeeds can be used as a conditional function.

Chapter 6

[319]

For example, the Index function returns the position of a substring in another string.
If it fails to locate the substring, then it will return 0. We might think that we should
use this in a condition like this:

Let vText='ABCDEFG';
Let vSearch='ABC';

If Index(vText, vSearch)>0 Then
 Trace Found $(vSearch) in $(vText);
End if

However, as the fail condition returns 0, we can just write the If statement like this:

If Index(vText, vSearch) Then
 Trace Found $(vSearch) in $(vText);
End if

There are a few other functions that return 0. If a function, such as FileSize, returns
a null value for a fail, we can turn this into a zero by wrapping it in the Alt function
as we did just now. In this case, we included the >0 test, but we could have written
the If statement without it:

If Alt(FileSize('c:\temp\Data.qvd'),0) Then

 Data:
 Load *
 From c:\temp\Data.qvd (qvd);

End if

Switch … Case
Switch ... Case is a less frequently used construct than If … Then … ElseIf;
this will be familiar to C/Java programmers. We test a value and then present several
possible options for that value and execute script blocks if there is a match. We can also
specify a default if there are no matches.

Here is a very simple example; note that we can pass several values to each
Case statement:

Let vVal='Hello';
SWITCH vVal
CASE 'Hello','Hi'
 Trace Hello there!;
CASE 'Goodbye','Bye'

Advanced Scripting

[320]

 Trace So long!;
DEFAULT
 Trace Glad you are staying;
END Switch

When and Unless
When and Unless are the equivalent of a single If … Then statement. They usually
appear as prefixes to a valid statement, but there are some control statements that
can have them as suffixes. The statement is followed by a conditional test and then
by the statement to execute if the condition is true or false. Consider this example:

When Alt(FileSize('c:\temp\Data2.qvd'),0) > 0
 Load * from c:\temp\Data2.qvd (qvd);

An example of Unless is:

Unless Alt(FileSize('c:\temp\Data1.qvd'),0)=0
 Load * from c:\temp\Data1.qvd (qvd);

Looping in the script
Repeating a step several times is something that we will have to do again and again.
There are a number of ways of performing loops, depending on requirements.

AutoGenerate
AutoGenerate might not be called a loop by some people but it does actually perform
a repeating task, the generation of multiple rows, for a set number of iterations.
The statement takes one parameter: the number of rows to generate.

Generating empty rows is not very useful, so we need to combine this AutoGenerate
with a function such as RecNo() or RowNo() and other calculations based on them.
Often both functions are interchangeable because the number of rows generated as
source will usually be the same as the number actually loaded. However, if we are
going to use a preceding load, then we will need to use RecNo() as the RowNo()
function will return zeroes.

Anywhere that we require to create a sequential list of values, we can think of perhaps
using AutoGenerate. A great use case is the generation of a calendar table:

// Calendar starts on the 1st January 2010
Let vStartDate=Floor(MakeDate(2010,1,1));

Chapter 6

[321]

// Calendar ends on the last day of last month
Let vEndDate=Floor(MonthStart(Today()))-1;
// How many rows do we need to generate?
Let vDiff=vEndDate-vStartDate+1;

// Generate the calendar table
Calendar:
Load
 TempDate as DateID,
 Year(TempDate) As Year,
 Month(TempDate) As Month,
 'Q' &Ceil(Month(TempDate)/3) As Quarter,
 Day(TempDate) As Day,
 Week(TempDate) As Week,
 Date(MonthStart(TempDate), 'YYYY-MM') As YearMonth,
 -YearToDate(TempDate, 0, 1, $(vEndDate)) As YTD_Flag,
 -YearToDate(TempDate, -1, 1, $(vEndDate)) As LYTD_Flag;
// Generate the number of rows required
Load
 RecNo()-1+$(vStartDate) As TempDate
AutoGenerate($(vDiff));

This script will generate the number of rows between two dates and use the start
date as the first value and increment this by one for each subsequent row. The
preceding load then transforms the TempDate field into various date values.

Creation of a calendar like this might be a piece of script that you store in a separate
text file for inclusion in several QlikView applications.

For … Next loops
The For ... Next type of loops are one of the most common in many programming
languages. We assign an initial value to a variable, perform a sequence of statement,
increment the variable by a fixed amount, then repeat until we have reached the
end point.

Here is a very simple example:

For i = 1 to 10
 Trace The value of i is $(i);
Next

Advanced Scripting

[322]

This will show in the script execution dialog like this:

This loop started at 1, echoed the value to the screen, incremented by the default
step of 1, and then repeated until it executed for the last value of 10.

If we want to use a step other than the default, we can add the Step to the
For statement:

For i = 5 to 50 Step 5
 Trace The value of i is $(i);
Next

We can even go backwards:

For i = 10 to 1 Step -1
 Trace The value of i is $(i);
Next

The variable that is generated can be used anywhere that we might use a variable
normally in QlikView. Consider this example:

For vYear=2010 to Year(Today())
 Data:
 SQL Select *
 From Data

Chapter 6

[323]

 Where Year=$(vYear);

 Store Data into $(vQVDPath)\Data$(vYear).qvd;
 Drop Table Data;
Next

This script will generate separate QVD files for each year from 2010 to the present year.

We can also nest loops inside each other:

For x = 1 to 10
 For y = 1 to 10
 Matrix:
 Load
 $(x) As X,
 $(y) As Y
 AutoGenerate(1);
 Next
Next

For Each … Next loops
Not every loop that we want to make will be based on a sequence of number.
The For Each syntax allows us to use a list of any values that we assign:

For Each vVar in 'A','B','C'
 Data:
 SQL Select * From Table$(vVar);

 Store Data into $(vQVDPath)\Table$(vVar).qvd;
 Drop Table Data;
Next

We can even derive the list of values from the data:

Temp:
Load
 Chr(39) &Concat(Field1,Chr(39)&','&Chr(39)) &Chr(39)
 As Temp_Field
Resident Table1;

Let vList=Peek('Temp_Field');

Drop Table Temp;

Advanced Scripting

[324]

Note the use of Chr(39), which is the apostrophe character.
We will also discuss the Peek function later in this chapter.

There are two filesystem-related functions that we can also use with For Each—
FileList and DirList.

FileList
The FileList function takes a file mask using wildcards and will return a list
containing the full file path of all files that match. We can then loop through
that list with For Each and process them. Have a look at this example:

For Each vFile in FileList('c:\data*.csv')
 Let vFileLen=FileSize('$(vFile)');
 Let vFileDate=FileTime('$(vFile)');
 Trace $(vFile) $(vFileLen) $(vFileDate);

 Data:
 LOAD *
 FROM
 [$(vFile)]
 (txt, utf8, embedded labels, delimiter is ',', msq);
Next

DirList
The DirList function is similar to FileList except that it returns a list of folders
instead of files. This function is very often used with a nested FileList. The following
is an example:

For Each vFolder in DirList('c:\data*')
 For Each vFile in FileList('$(vFolder)*.csv')
 Let vFileLen=FileSize('$(vFile)');
 Let vFileDate=FileTime('$(vFile)');
 Trace $(vFile) $(vFileLen) $(vFileDate);

 Data:
 LOAD *
 FROM
 [$(vFile)]
 (txt, utf8, embedded labels, delimiter is ',', msq);
 Next
Next

Chapter 6

[325]

Do … Loop
Another very common construction in programming is the Do … Loop statements,
which cause a block of script to be executed either while a condition is fulfilled or
until a condition is fulfilled:

Let vLetters='ABCDEFGHIJKLMNOPQRSTUVWXYZ';

Do
 Load
 Left('$(vLetters)',1) As Letter,
 RowNo() As LetterIndex
 AutoGenerate(1);

 Let vLetters=Mid('$(vLetters)', 2);
Loop Until Len('$(vLetters)')=0

We can also write this by putting a clause at the beginning:

Do While vLetters<>''
 Load
 Left('$(vLetters)',1) As Letter,
 RowNo() As LetterIndex
 AutoGenerate(1);

 Let vLetters=Mid('$(vLetters)', 2);
Loop

The difference is that a clause at the beginning means that there is potential for the
script block to never execute. A clause at the end means that the block will execute
at least once.

Exiting
There are a few different circumstances in which we might want to break the
execution of the script or a block of script.

Exiting the script
We can exit the entire script by calling the function:

Exit Script;

The script will terminate normally at this point, as if there were no additional script
lines following it.

Advanced Scripting

[326]

This can be an enormously useful thing for us to insert into our script to test and
troubleshoot. By adding the function at any stage in our script, we can then find out
what state our data is in.

We can enhance the troubleshooting functionality by adding a condition to the exit.
We can use an If … Then construct, but this is also a case where our conditional
functions, When and Unless, can be appended. For example, if we want to stop our
script unless some condition is true, the following code can be used:

EXIT Script when FieldValueCount('Letter')<>26;

This can also be written like this:

EXIT Script unless FieldValueCount('Letter')=26;

As another example, we might want the script to end at a certain point unless it is the
first day of the month:

EXIT Script unless Day(Today())=1;

Exiting other constructs
We can also exit other script constructs such as For/For Each and Do loops and
subroutines. The syntax is similar to the aforementioned, but we just need to use
the correct keyword for the construct that we are in:

Exit For;
Exit Do;
Exit Sub;

We can also append conditional expressions:

Exit For when vFound=1;

Using variables for error handling
Rather than allowing QlikView to throw an error and stopping the execution of
a script, there are a number of variables that we can use to handle error situations
and allow the script to continue.

Chapter 6

[327]

ErrorMode
There are three possible values for the ErrorMode variable:

ErrorMode Description
0 QlikView will ignore any errors. The script execution will continue

at the next line of script.
1 This is normal error handling. The script will halt and the user will

be prompted for an action.
2 In this mode, the user will not be prompted and the script will fail

as if the user clicked on Cancel on the prompt dialog.

To turn off error handling, we simply set the variable as follows:

Set ErrorMode=0;

To turn it back on, we set the variable again:

Set ErrorMode=1;

ScriptError
If we turn off error handling, we will need to do our own error handling by regularly
querying the state of the ScriptError variable.

The ScriptError variable will contain a dual value with the error code as the number
and the description as the text. If the error code is zero, then there is no error.

Some of the database errors will generate additional error messaging in the
ScriptErrorDetails variable.

ScriptErrorCount and ScriptErrorList
If we are interested in the total number of errors and their details, we can query the
ScriptErrorCount variable, which has the number, and ScriptErrorList will
have the text of the errors, separated by carriage returns.

Advanced Scripting

[328]

Examining advanced Table File Wizard
options
The Table Files Wizard is used by many to load a file and generate the load script for
it. However, there is a not-so-secret secret button with the word Next written on it
that is often ignored:

There are some great things in here that are worth looking at.

Enabling a transformation step
When we first hit that Next button on the wizard, we are presented with the interesting
option, Enable Transformation Step:

Chapter 6

[329]

If we click on this button, it brings us to a new dialog with several tabs:

Advanced Scripting

[330]

Garbage
The Garbage tab allows us to clean out records that are not useful to us. In the
preceding screenshot, there are a couple of rows that we can select and click on the
Delete Marked button to remove. We can also click on the Conditional Delete…
button and set up a rule to delete particular rows, for example, if they begin with
the word Total:

Fill
The Fill tab allows us to fill in missing values, or overwrite other values, based on a
condition. We can fill data from any direction:

Chapter 6

[331]

Column
The Column feature allows us to create new columns or replace columns, by copying
the content of another column:

This is quite often used with the Context tab because it allows us have two columns:
one with the original value and one with the value extracted from the context.

Context
The Context tab is only available when working with HTML data. It allows us
to extract information from tags in the data. For example, if we go to www.xe.com,
we can get a table that lists currencies. In one column, we will have the currency
name but this is also a hyperlink. The Context function allows us to interpret the
value as HTML and extract the hyperlink href value:

http://www.xe.com

Advanced Scripting

[332]

Unwrap
The Unwrap function allows us to take data that might be wrapped across multiple
columns and unwrap it. For example, if we have the Year and Value columns
followed by another pair of Year and Value columns, the Unwrap function will
allow us to wrap the second pair of columns back under the first pair where the
data should be.

Rotate
The Rotate function allows us to either rotate data to the left-hand side or right-hand
side, or transpose the data; that is, columns become rows and rows become columns.

Using the Crosstable wizard
The last couple of pages of Table Files Wizard contain further manipulation options.
Probably the most frequently used of these is the Crosstable option. This is used,
often with Excel files but can also be from any data source, to correct the data where
you have what appear to be field names in a two-dimensional matrix and you want
to transform them into the field values that they should be. For example, in a budget
file, we might have the budget month running across the top of the page:

Chapter 6

[333]

However, the budget month is actually not a field in itself; it should be a field value.
This is where the Crosstable wizard comes in:

In the wizard, we need to tell it how many fields are Qualifier Fields. This means
fields that are already correct as field values and don't need to be unraveled. Next, we
specify a name that we want to call the new field, for example, BudgetMonth. Finally,
we specify a name for the new field that will hold the values that are currently in the
matrix, for example, BudgetValue. Luckily, these days, QlikView provides a color
coding to show you where each value applies.

When we click on OK in the Crosstable wizard, we will see a preview of the how
the data will look:

Advanced Scripting

[334]

When we now click on OK, the script to load the table, along with the Crosstable
prefix, will be inserted into the script editor:

CrossTable(BudgetMonth, BudgetValue, 2)
LOAD RepCode,
 Country,
 [41640],
 [41671],
 [41699],
 [41730],
 [41760],
 ...
 [42309],
 [42339]
FROM
[..\Sources\Budget.xls]
(biff, embedded labels, table is Sheet1$, filters(
Remove(Row, Pos(Top, 1)),
Remove(Row, RowCnd(CellValue, 1, StrCnd(start, 'Total'))),
Remove(Row, Pos(Top, 5)),
Replace(1, top, StrCnd(null))
));

We can see that the values that we passed in from the wizard have gone in as
parameters. Actually, once we understand what the parameters of the CrossTable
statement are, we might never use the wizard again!

It is interesting to note that we don't need to actually list all the fields in the file.
We can, instead, have a piece of script like this:

CrossTable(BudgetMonth, BudgetValue, 2)
LOAD *
FROM
[..\Sources\Budget.xls]
(biff, embedded labels, table is Sheet1$);

This will allow different months to be added or removed from the file as time goes on.
However, we will need to ensure that the structure of the file doesn't change and no
additional columns are added that are not month values (for example, totals)

Chapter 6

[335]

Another thing to note is that if the column names are numeric (as in this example),
they will actually be loaded as text. This is correct because QlikView will otherwise
just load the column name into all the values! In that case, we might need to add an
additional step:

Budget_Temp:
CrossTable(BudgetMonth, BudgetValue, 2)
LOAD *
FROM
[..\Sources\Budget.xls]
(biff, embedded labels, table is Sheet1$);
Budget:
NoConcatenate
Load
 RepCode,
 Country,
 Date(Num#(BudgetMonth,'#####')) As BudgetMonth,
 BudgetValue
Resident
 Budget_Temp;

Drop Table Budget_Temp;

Looking at data from different directions
Sometimes, we need to consider data from different directions. In this section, we
will examine some advanced techniques for data manipulation that will make our
lives easier.

Putting things first
We will often come across situations where we need to consider the earliest values
in a dataset, either just the first number of rows or the first value in an ordered set.
QlikView has functions for this.

Advanced Scripting

[336]

First
The First statement will precede a load and states the number of records that
should be loaded:

First 10
Load *
From Data.qvd (qvd);

Sometimes, if we want to just get a fixed set of rows from a file, we can use the
Header option in Table Files Wizard to remove any rows preceding the rows we
want and then use the First statement to grab the lines that we do want. This can
be an effective strategy where there are several datasets in one worksheet in Excel.

FirstSortedValue
FirstSortedValue is a very advanced function that can be used both in the script
and in charts. We use it to obtain the top value in a sorted list of values.

As an example, say that we want to retrieve ProductID with the highest sales value
for each order, the following code can be used:

TopProd:
Load
 OrderID,
 FirstSortedValue(ProductID, -LineValue) As TopProduct
Resident
 Fact
Group by OrderID;

We retrieve the top product based on the order of the LineValue field. The minus
sign preceding the field name indicates that this is a descending sort, so the first
product should correspond to the highest value.

Note that this is an aggregation function, so in the script,
there must be a Group by clause.

We can pass some other parameters. For example, if more than one product had the
same value, then the default option is to return null. If we specify Distinct before
ProductID, then the duplicate situation will be ignored.

We can also pass a third parameter after the sort weight to, say, get the second or
third or nth sorted value instead of the first.

Chapter 6

[337]

Looking backwards
When loading data, it can be a very neat trick to look at data that we have loaded
before. There are two great functions that we can use to do this.

Previous
The Previous function can look at a value in the previous input row. This can be
really useful. In fact, we can nest multiple previous statements together to look even
further back!

Mostly, the function will be combined with an Order By clause. This means that we
can have some kind of expectation of what the previous record held, and therefore,
test for that.

As an example, let's look at this simple dataset:

Emps:
Load * Inline [
Employee, Grade, StartDate
Brian, 1, 2010-01-04
Jill, 1, 2011-07-19
Graham, 3, 2010-02-02
Miley, 2, 2011-08-20
Brian, 2, 2012-04-03
Jill, 3, 2013-11-01
Miley, 3, 2014-01-30
];

We can see that we have a list of employees with the grade that they are at and the
date that they started at that grade. What would be good to be able to calculate is the
end date for each of the grades (which would be today for the latest grades) so that
we can match these employees to events that happened on particular dates (using
IntervalMatch).

If we sort the data by employee and then the start date in the descending order,
we can compare on each row if we are dealing with the same employee as on the
previous row. If we are, we can calculate the end date from the previous date.
If not, we just use today's date. Here is the code:

Employee:
Load
 Employee,
 Grade,

Advanced Scripting

[338]

 StartDate,
 If(Previous(Employee)=Employee,
 Previous(StartDate)-1,
 Today()
) As EndDate
Resident
 Emps
Order By Employee, StartDateDesc;

Drop Table Emps;

Peek
Peek is the opposite of the Previous function in that Peek will look at data that has
been loaded into memory rather than data that is being loaded from a source. From
that point of view, it is always available because the data is just there, whereas the
Previous function can only operate during a load. This makes Peek very versatile
for accessing data from the in-memory tables.

Peek takes up to three parameters:

Parameter Description
Field name The name of the field that you want to retrieve the value from.

It is passed as text literal, that is, in single quotes.
Row index The row of the table from which you want to retrieve the field

value. This index starts at 0 for row 1 (just to confuse us) and
you can also pass a value of -1, which is the default, to retrieve
the value from the last row loaded.

Table name The name of the data table from which you want to retrieve the
value. It is passed as a text literal.

If Peek is used with just the field name, then the most recently loaded value into that
field, into whatever table, will be returned. If the row index is passed, then you must
also pass the table name, as it doesn't make sense without it.

As an example, let's use a loop to cycle through all the records in a table, extract the
field values, and display them using a trace:

For i=0 to NoOfRows('Employee')-1

 Let vEmp=Peek('Employee', $(i), 'Employee');
 Let vGrade=Peek('Grade', $(i), 'Employee');
 Let vDate=Date(Peek('StartDate', $(i), 'Employee'), 'M/D/YYYY');

Chapter 6

[339]

 Trace Employee, $(vEmp), started Grade $(vGrade) on $(vDate);

Next

As a more advanced example of using Peek, let's imagine that we had a sale file
output from an ERP system that contained both header and line information in
the one file. Here is an example:

201A0000120140801
202PR0001000005000366
202PR0002000011001954
202PR0003000017000323
202PR0004000001009999
202PR0005000008003287
201A0000220140802
202PR0001000003000360
202PR0002000111000999

Lines beginning with 201 are the order header row. They contain the customer
number and the order date. Lines beginning with 202 are order lines and they
contain a product code, quantity, and price per unit.

Obviously, we might imagine that we could deal with this using Table Files Wizard
as it is a fixed width record. However, the problem here is that there are different
width values on different lines. This is a perfect place to use Peek! Let's have a look
at how we build the code for this.

It can be useful to use the wizard to help us get started, especially if there are many
fields. In fact, we can run it twice to help build up the script that we need:

LOAD @1:3 as LineType,
 @4:9 as CustomerCode,
 @10:n as OrderDate
 ...

The following script has to be run as well:

LOAD @1:3 AsLineType,
 @4:9 AsProductCode,
 @10:15 As Quantity,
 @16:n/100 As UnitPrice
 ...

Advanced Scripting

[340]

Now, we can combine these. We will use Peek to move the CustomerCode and
OrderDate values onto the order line rows:

SalesFile_Temp:
LOAD
 @1:3 AsLineType,
 If(@1:3=201,
 @4:9,
 Peek('CustomerCode')
) As CustomerCode,
 If(@1:3=201,
 Date#(@10:n,'YYYYMMDD'),
 Peek('OrderDate')
) As OrderDate,
If(@1:3=202,@4:9,Null()) As ProductCode,
If(@1:3=202,@10:15,Null()) As Quantity,
If(@1:3=202,@16:n/100,Null()) As UnitPrice
FROM
[..\Sources\SalesFile.txt]
(fix, codepage is 1252);

Now, the table will contain a mix of row types, but we only need the ones that are
type 202, because they have all the good data now:

SalesFile:
Load
 CustomerCode,
 OrderDate,
 ProductCode,
 Quantity,
 UnitPrice,
 Quantity*UnitPrice as LineValue
Resident
 SalesFile_Temp
Where LineType=202;

Drop Table SalesFile_Temp;

Reusing code
In various areas of this chapter so far, we've suggested that it can be useful to maintain
script elements in separate text files that can be included within the QlikView script
using an Include or Must_Include construct.

Many organizations, when building their own best practices among their QlikView
team, will create a library of such scripts.

Chapter 6

[341]

One such library that any QlikView developer who is interested in increasing
their skill levels should look at is the QlikView Components library created by
Rob Wunderlich. Refer to https://github.com/RobWunderlich/Qlikview-
Components for more information.

This library contains a whole host of functions that, even if a developer wasn't
to use them, would be worth reviewing to see how things are done.

As a quick example, something that we do in almost every QlikView application
is to generate a Calendar table:

Call Qvc.Calendar(vStartDate, vEndDate, 'Calendar', 'Cal', 1);

That is it!

It is also a good idea to check out Rob's QlikView Cookbook (unrelated to the
QlikView for Developers Cookbook, Packt Publishing, Stephen Redmond) website:
http://qlikviewcookbook.com/.

Summary
This chapter has given us a lot of good information on functions that we can use
when writing scripts.

After reviewing the basics on loading data, we then went into how to count records
and the useful functions that we have for that purpose. We had a discussion on the
best way to optimize data loading. We then explored variables and the Dollar-sign
Expansion in the script. We talked about fundamental control structures and had a
good look at Table Files Wizard, followed by a discussion on using different functions
to grab data from different directions.

Finally, we had a very brief discussion on reusing code and the use of libraries such
as Rob Wunderlich's QlikView components.

In the next and final chapter, we will have a look at the area of data visualization.

https://github.com/RobWunderlich/Qlikview-Components
https://github.com/RobWunderlich/Qlikview-Components
http://qlikviewcookbook.com/

Visualizing Data
"The greatest value of a picture is when it forces us to notice what we never
expected to see."

 - John Wilder Tukey, statistician and developer of the box plot

"The purpose of visualization is insight, not pictures."

 - Ben Shneiderman, developer of the treemap

These two quotes are interesting in their juxtaposition. One tells us to draw pictures
that reveal the unexpected. The other tells us that the purpose of visualization is not
pictures but insight. If they were part of the same conversation, one might believe that
the two famous contributors to the area of data visualization were in a disagreement.

Of course, this is not true, and these statements were made at different times and in
different contexts. However, they could be part of the same conversation. One that
extols us to, yes, create pictures, but not just pretty pictures; pictures that deliver
insight, pictures that reveal the unexpected.

In this chapter, we are going to explore where data visualization has come from.
We will also look at the important things to understand about how humans work with
data, and this will lead us to some rules about how to present data most effectively.

These are the topics we'll cover in this chapter:

• Reviewing the history of data visualization
• Understanding the audience
• Designing effective visualizations

Visualizing Data

[344]

Reviewing the history of data visualization
Before we can discuss how best to visualize data, it is useful to understand a little
about your audience: humans. The first thing to understand is that humans have
been visualizing things for a long, long time. Some people seem to think that data
visualization started some time in 1800, but things were happening a long time
before that.

Beginning the story
At some unknown stage in human evolution, it suddenly became important to tell
stories. In many cultures, the easiest way to tell these stories was to create pictures
that would enable the storyteller to show the listeners what was being related:

Bisonte Rupestre en Altamira by Baperukamo—own work

This photograph is licensed under Creative Commons Attribution-Share Alike 3.0
via Wikimedia Commons and is available at http://commons.wikimedia.org/
wiki/File:Bisonte_Rupestre_en_Altamira.jpg#mediaviewer/File:Bisonte_
Rupestre_en_Altamira.jpg.

http://commons.wikimedia.org/wiki/File:Bisonte_Rupestre_en_Altamira.jpg#mediaviewer/File:Bisonte_Rupestre_en_Altamira.jpg
http://commons.wikimedia.org/wiki/File:Bisonte_Rupestre_en_Altamira.jpg#mediaviewer/File:Bisonte_Rupestre_en_Altamira.jpg
http://commons.wikimedia.org/wiki/File:Bisonte_Rupestre_en_Altamira.jpg#mediaviewer/File:Bisonte_Rupestre_en_Altamira.jpg

Chapter 7

[345]

As civilizations grew, the aural transfer of information became more important.
Later, the written word became the most important method of transmitting messages.
However, art was always the most important way of telling stories and sharing ideas.

As numeracy increased and mathematics developed, methods to use images to
understand the numbers started to appear.

Analyzing geometry
The first cases of uses of visualizations to represent numbers come in the area of
analytical geometry—using some kind of coordinate system to either resolve or
create equations.

Grecian influences
The earliest uses can be traced back to before 300 BC in ancient Greece, during the
great era of philosophers, at a time when scholastic pursuits were encouraged.

Menaechmus (around 380 BC to 320 BC) was a Greek mathematician and friend of
Plato, who is credited with discovering the conic sections: the realization that shapes
like the ellipse and parabola were actually cross-sections of a cone. His methods of
proving his theorems had a strong resemblance to the use of coordinates.

Apollonius of Perga (around 262 BC to 190 BC) developed a method that is very
similar to those developed by more modern mathematicians. He can't be fully
attributed with the development of analytical geometry, because he was also working
on conics and his equations related to curves. He was able to come up with equations
of the motions of planets, and his work influenced other important mathematicians
such as Ptolemy.

Claudius Ptolemy (around 90 AD to 168 AD) created one of the first, widely replicated
data visualizations when he created his Geographia. He collected as much data as he
could, transformed it using rules that he established himself, and created his famous
world maps.

Visualizing Data

[346]

French discord
One of the most interesting debates in Mathematics is that of who really created
analytical geometry. The debate centers on two famous French mathematicians
and history appears to have come down in the favor of the publishing date.

René Descartes (1596 to 1650) is the historical winner:

René Descartes

This photograph is licensed under Public Domain via Wikimedia Commons and is
available at http://commons.wikimedia.org/wiki/File:Ren%C3%A9_Descartes.
jpg#mediaviewer/File:Ren%C3%A9_Descartes.jpg.

Descartes is famous as being both a mathematician and philosopher. He coined
the often used phrase, "I think, therefore I am". He has also had the honor of
having his name applied to the coordinate system used in analytical geometry:
Cartesian coordinates.

Descartes published his essay, La Geometrie, in 1637. Interestingly, although he
reduced geometry down to arithmetic and algebra and he introduced the concepts
of the coordinate system that now bears his name, there are no equations actually
graphed in this work.

http://commons.wikimedia.org/wiki/File:Ren%C3%A9_Descartes.jpg#mediaviewer/File:Ren%C3%A9_Descartes.jpg
http://commons.wikimedia.org/wiki/File:Ren%C3%A9_Descartes.jpg#mediaviewer/File:Ren%C3%A9_Descartes.jpg

Chapter 7

[347]

Pierre de Fermat (1601 to 1665) appears to be the loser:

Pierre de Fermat

This photograph is licensed under Public Domain via Wikimedia Commons and is
available at http://commons.wikimedia.org/wiki/File:Pierre_de_Fermat.
png#mediaviewer/File:Pierre_de_Fermat.png.

Pierre de Fermat had also written a work on analytical geometry that was apparently
circulating in Paris in the manuscript form in 1637, prior to Descartes publication
of La Geometrie. It is unlikely that Descartes was aware of this as he was living in
the Dutch Republic at the time. So, it appears that both came up with their ideas
independently. Descartes was actually published in 1637 (with a Latin translation
published in 1649), whereas de Fermat's manuscript was not published until 1679.

The main difference between the two works was a matter of perspective. Descartes'
techniques started with a curve and produced the equation of the curve. Pierre de
Fermat's techniques started with an equation and then described the curve. Because
of this, Descartes had to deal with more complex equations but this meant that he
developed methods to deal with higher degree polynomial equations.

Telling stories with diagrams
Mathematicians developed the use of charts to help them work out complex
calculations. Over a hundred years after Descartes' La Geometrie, scientists and
mathematicians emerged who would use charts to educate and persuade.
They used them to tell stories.

http://commons.wikimedia.org/wiki/File:Pierre_de_Fermat.png#mediaviewer/File:Pierre_de_Fermat.png
http://commons.wikimedia.org/wiki/File:Pierre_de_Fermat.png#mediaviewer/File:Pierre_de_Fermat.png

Visualizing Data

[348]

Educating with charts
One of the earliest recorded uses of using charts to educate was by the polymath,
Joseph Priestley (1733 to 1804) who used charts that look very like what we today
know as Gantt charts, to help deliver history lectures at Warrington Academy:

A New Chart of History (color) by Alan Jacobs

The preceding photograph is licensed under Public Domain via Wikimedia
Commons and is available at http://commons.wikimedia.org/wiki/File:
A_New_Chart_of_History_color.jpg#mediaviewer/File:A_New_Chart_of_
History_color.jpg.

His A New Chart of History and Chart of Biography might have been influenced by
an earlier chart created by Jacques Barbeu-Dubourg (1709 to 1779) in 1753 in Paris.
However, Priestly's charts were much simplified (Barbeu-Duborg's chart was
54-feet long!) and easier to understand.

http://commons.wikimedia.org/wiki/File: A_New_Chart_of_History_color.jpg#mediaviewer/File:A_New_Chart_of_History_color.jpg
http://commons.wikimedia.org/wiki/File: A_New_Chart_of_History_color.jpg#mediaviewer/File:A_New_Chart_of_History_color.jpg
http://commons.wikimedia.org/wiki/File: A_New_Chart_of_History_color.jpg#mediaviewer/File:A_New_Chart_of_History_color.jpg

Chapter 7

[349]

His charts were much admired, and along with his influential work in the area
of Chemistry, this led him to be nominated by his peers to become a member of
the Royal Society.

Inventing new charts
Now entering into this account, we meet one of the most famous individuals in
the history of data visualization: William Playfair (1759 to 1823). Playfair, after
a long line of interesting employments, became an economic journalist. He was
almost certainly influenced by Priestly's time series charts and developed them
as a method of representing the change of a value over time—what we would
recognize today as a line chart:

Playfair TimeSeries by William Playfair (1786)

This photograph is licensed under Public Domain via Wikimedia Commons
and is available at http://commons.wikimedia.org/wiki/File:Playfair_
TimeSeries.png#mediaviewer/File:Playfair_TimeSeries.png.

http://commons.wikimedia.org/wiki/File:Playfair_TimeSeries.png#mediaviewer/File:Playfair_TimeSeries.png
http://commons.wikimedia.org/wiki/File:Playfair_TimeSeries.png#mediaviewer/File:Playfair_TimeSeries.png

Visualizing Data

[350]

When creating his work, Commercial and Political Atlas, 1786, Playfair had 43
plates that showed these line charts of import and export from various countries
over the years. However, he had a problem. He also wanted to include the data
for Scotland but did not have all the data. So, he came up with a different solution;
he just showed one year's data for Scotland's 17 trading partners with two lines for
each that represented the imports and exports:

Playfair Barchart by William Playfair, London, 1786

This photograph is licensed under Public Domain via Wikimedia Commons and is
available at http://commons.wikimedia.org/wiki/File:Playfair_Barchart.
gif#mediaviewer/File:Playfair_Barchart.gif.

Of course, this is what we know today as a bar chart.

http://commons.wikimedia.org/wiki/File:Playfair_Barchart.gif#mediaviewer/File:Playfair_Barchart.gif
http://commons.wikimedia.org/wiki/File:Playfair_Barchart.gif#mediaviewer/File:Playfair_Barchart.gif

Chapter 7

[351]

In his work, Statistical Breviary, 1801, Playfair introduced another new chart;
the pie chart:

Playfair-piechart by William Playfair

This piechart is taken from The Commercial and Political Atlas and Statistical Breviary,
Cambridge University Press.

This photograph is licensed under Public Domain via Wikimedia Commons and is
available at http://commons.wikimedia.org/wiki/File:Playfair-piechart.
jpg#mediaviewer/File:Playfair-piechart.jpg.

What Playfair achieved was not just the creation of a new chart type, but it was the
use of charts to bring numbers to the public. From that time, the use of charts in
financial and statistical publications has become the norm.

Creating infographics
A retired French engineer, Charles Joseph Minard (1781 to 1870), created a
visualization that had a big impact on infographics.

Minard retired in 1851 and spent his retirement doing private research. In his
career as a civil engineer, he worked on road and bridge projects and used maps
extensively. After his retirement, he started to produce some data visualizations
that made use of maps to position the data geographically. For example, in 1858,
he created a visualization of the cattle being sold in Paris. The chart showed a
pie chart on each region, where the cattle were coming from with the segments
breaking down the breed of the animals.

http://commons.wikimedia.org/wiki/File:Playfair-piechart.jpg#mediaviewer/File:Playfair-piechart.jpg
http://commons.wikimedia.org/wiki/File:Playfair-piechart.jpg#mediaviewer/File:Playfair-piechart.jpg

Visualizing Data

[352]

The size of each pie chart represented the total sales:

Minard-carte-viande, 1858, by Charles Joseph Minard

This map is taken from Des chiffres et des cartes: la cartographie quantitative au XIXè
siècle, Gilles Palsky, Paris: Comité des travaux historiques et scientifiques.

This photograph is licensed under Public Domain via Wikimedia Commons—
http://commons.wikimedia.org/wiki/File:Minard-carte-viande-1858.
png#mediaviewer/File:Minard-carte-viande-1858.png.

His most famous work was published in 1869. Minard combined his ideas around
mapping and engineering flow diagrams to show the results of Napoleon Bonaparte's
disastrous Russian campaign of 1812/1813. The beauty of this visualization was that
the entire campaign was described in one image and the reader required very little
effort to understand it:

http://commons.wikimedia.org/wiki/File:Minard-carte-viande-1858.png#mediaviewer/File:Minard-carte-viande-1858.png
http://commons.wikimedia.org/wiki/File:Minard-carte-viande-1858.png#mediaviewer/File:Minard-carte-viande-1858.png

Chapter 7

[353]

Stephen Redmond's recreation in QlikView of Minard's famous visualization

You can refer to http://www.qliktips.com/2012/06/homage-to-minard.html to
find out more on how this was created.

Using data visualization to persuade
Florence Nightingale (1820 to 1910) is famous to many people as one of the founders
of modern nursing techniques. Her caring work during the Crimean War helped
establish her reputation, and she later established a nursing school in St. Thomas's
Hospital in London.

What is less well known about her is that she was a brilliant mathematician and
became the first female member of the Royal Statistical Society. She wrote extensively
on the subject of public health and used her mathematical knowledge to help make her
points, quite often including pie charts in her publications to help make her points.

http://www.qliktips.com/2012/06/homage-to-minard.html

Visualizing Data

[354]

Nightingale's most famous visualization was an early use of a polar chart:

Nightingale-mortality by Florence Nightingale

This photograph is licensed under Public Domain via Wikimedia Commons and
is available at http://commons.wikimedia.org/wiki/File:Nightingale-
mortality.jpg#mediaviewer/File:Nightingale-mortality.jpg.

The segments in this chart show the total deaths of servicemen in the British Army.
The red segments in the middle are deaths from wounds. The black segments are
"others". The larger blue segments are preventable deaths caused by infections.
She used this chart to make the case for better sanitation in hospitals.

Bringing the story up to date
The story didn't end at the beginning of the twentieth century. Mathematicians,
statisticians, engineers, economists, and other scientists have continued to use and
develop data visualizations.

However, until quite recently, relatively little has been written and broadly published
on the subject. One of the best books on data visualization in the modern era is The
Visual Display of Quantitative Data by Edward Tufte. This book was published back
in 1983.

http://commons.wikimedia.org/wiki/File:Nightingale-mortality.jpg#mediaviewer/File:Nightingale-mortality.jpg
http://commons.wikimedia.org/wiki/File:Nightingale-mortality.jpg#mediaviewer/File:Nightingale-mortality.jpg

Chapter 7

[355]

The digital revolution brought data visualization to the masses. Anyone with a PC
and Microsoft Excel could now quickly create charts and share them with colleagues.
While everyone was doing what they wanted with these tools, the academic study
of the subject has been slow to catch up. However, we now have a rich amount of
information and research available and there are several leading thinkers in the area.

Following the leaders
There are a number of thought leaders that I follow online and believe that it is
worthwhile for others to pay attention to. Of course, following online does not mean
blindly following each and every suggestion made by these luminaries. We should
always apply our own thoughts and logic to come up with the right solutions for us.

Edward Tufte
Edward Tufte is alive and well and still talking to the world about data visualization.
His 1983 book is still in print and widely available. You can follow Edward on
Twitter at @EdwardTufte.

Few
Stephen Few published his first book on data visualization, Show Me The Numbers,
back in 2004. This was at a time when there was a real lack of thought-leadership
on the subject. He has since published two additional works: Information Dashboard
Design and Now You See It. Both Show Me the Numbers and Information Dashboard
Design have had second editions published in recent years. Stephen regularly
publishes blogs and comments to his own website, www.perceptualedge.com.

Robert Kosara
Robert Kosara was a professor at the University of Maryland before taking a sabbatical
year and joining Tableau Software, where he still works.

His blog, www.eagereyes.com, has been very popular for many years, and he also
appears at data visualization conferences and is a regular contributor to various media.
Robert can be followed on Twitter at @eagereyes.

www.perceptualedge.com
www.eagereyes.com

Visualizing Data

[356]

Alberto Cairo
Alberto Cairo is a professor teaching visualization at the University of Miami.
His book, The Visual Art, is a bestseller in the topic. He has also taught the subject
on a Massive Open Online Course (MOOC). Alberto can be following on Twitter
at @albertocairo.

Andy Kirk
Andy Kirk is a freelance data visualization specialist, designer, speaker, and
researcher. He is the author of Data Visualization: A Successful Design Process.
He delivers public training on the subject worldwide. His data visualization
website is www.visualisingdata.com and Andy tweets on Twitter at
@visualisingdata.

Enrico Bertini and Stefaner Moritz
Enrico Bertini lectures on visualization at NYU. Stefaner is an independent design
consultant. Together, they present a biweekly podcast called Data Stories. Each episode
will involve a guest from one of many subjects within the area of data visualization.

The podcast can be subscribed to on iTunes or via their website, www.datastori.es.
Enrico tweets at @FILWD and Stefaner at @moritz_stefaner.

Mike Bostock
Mike Bostock has had a huge influence on the area of data visualization because he is
the founder of and chief contributor to the d3.js JavaScript library. This library allows
developers to create engaging web content from their data with very little coding.
The library can also be relatively easily used within Qlik extension objects.

Mike's day job is working for the New York Times as part of their award-winning
visualization team where they regularly push the boundaries of how we view data.
He has his own blog at bost.ocks.org and he tweets at @mbostock.

www.visualisingdata.com
www.datastori.es
bost.ocks.org

Chapter 7

[357]

Understanding the audience
To deliver effective data visualizations, we need to understand our audience:
human beings.

There are some rules that we need to know when dealing with humans. These are
based on sound psychological studies, and therefore, aren't always true! They are
good guidelines that apply to the majority of the population, but we really need
to know that you can't please all of the people all of the time.

Matching patterns
One of the things that humans really excel at is recognizing things that they have seen
before or look similar to things that they have seen before and associating those things
with other similar things that they have experienced before. As we tend to share a lot
of cultural experiences, many of us will share the same generalizations. For example,
you might have seen this in your Facebook or e-mail in the recent past:

"Olny srmat poelpe can raed tihs.
I cdnuolt blveiee taht I cluod aulaclty uesdnatnrd waht I was rdanieg. The
phaonmneal pweor of the hmuan mnid, aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, t he olny
iprmoatnt tihng is taht the frist and lsat ltteer be in the rgh it pclae. The rset can be
a taotl mses and you can sitll raed it wouthit a porbelm. Tihs is bcuseae the huamn
mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe. Amzanig huh?
yaeh and I awlyas tghuhot slpeling was ipmorantt!"

Visualizing Data

[358]

Of course, this isn't true! Consider this sentence:

udinsnantderg lugagane sdolem egurecaons ciosonfun

In the first paragraph, the letters aren't really completely scrambled. They are close
enough to the originals for us to easily read the paragraph as we scan across them
and match the patterns to the words. In the second sentence, the letters are truly
scrambled, and we need to try and employ our anagram-solving skills to try and
understand the sentence: understanding language seldom encourages confusion.

The process of seeing patterns in things that might otherwise be considered random
is called apophenia. It is something that we do a lot because we are very good at it.
Imagine driving down the freeway and seeing a cloud ahead of you.

What do you see? Is it merely a collection of water droplets, floating on air currents?
Or is it a dragon, flying through the sky? It could be anything. To each of us, it is
whatever our brains make of it, whatever pattern we match.

We are fantastic at seeing these pictures. We have a large proportion of our brain
devoted to the whole area of visuals and matching patterns against our memory,
far bigger than for any other sense.

Counting numbers
We, as humans, don't have a very long history with numbers. This is because
for very long stretches of our evolution, we just didn't need number systems.
As hunter-gatherers, it was not necessary for us to count accurately. All we
needed to do was make estimations.

We can still see this today in surviving hunter-gatherer tribes such as the Warlpiri
in Australia and the Munduruku in the Amazon. Both tribes have words in their
languages for small numbers such as one, two, or three, but after that they either
have no words at all or have some words but are inconsistent in their use.

Chapter 7

[359]

About 10,000 years ago, things started to change. Although there is evidence of
limited agriculture in surrounding areas, the real changes happened in and around
an area known as Fertile Crescent (http://en.wikipedia.org/wiki/Fertile_
Crescent), an area sitting between the Nile Delta in the southwest, the Caspian
Sea in the northeast, the Black Sea in the northwest, and the Persian Gulf in the
southeast. The main rivers of this area, Tigris, Euphrates, and Nile, created a large
area of fertile land and agriculture and husbandry of animals exploded. Man started
changing from hunter-gatherer to farmer and shepherd.

As we settled down, we started trading with each other. Suddenly, we came up
with a reason to count things! When we went to bed with one hundred sheep in
the field, it was important to know that there were one hundred sheep still there
in the morning.

Given that we have had up to a million years of evolution, it might not be too far a
stretch to say that most humans are not as comfortable with numbers as they think.

Estimating numbers
Consider this figure:

How many dots are in the upper circle?

How many dots are in the lower circle?

http://en.wikipedia.org/wiki/Fertile_Crescent
http://en.wikipedia.org/wiki/Fertile_Crescent

Visualizing Data

[360]

Now, consider how you answered both those questions. I would suggest that most
people will look at the upper circle and immediately see two dots. However, when
most people look at the second circle, they will not immediately see eight dots. Instead,
they will often switch to breaking the number down, perhaps see three + two + three
(vertically), three + three + two (horizontally), or some other breakdown, and then add
those back up to get the number eight. Even for such a relatively small number such
as eight, we still tend to break it down into smaller groups. So, how can we count this
number of dots?

Of course, we can't count these in one go. We could spend a minute counting
them one by one, although we still might not get the correct answer as the random
arrangement could lead to mistakes. Alternatively, we could just have a guess and
estimate the correct answer. Wouldn't that be good enough for most situations?
It would be especially good enough if our goal is just to answer the question of
which side has more dots:

If we have to answer the question with any sort of immediacy, we need to quickly
estimate and decide. Quite often though, we will get the right answer! Our brains
are actually very good at this estimation, and it comes from a time a long way before
numbers existed.

Chapter 7

[361]

When deciding where to spend valuable energy to chase down or gather food, early
man would have had to make the calculations on return on investment. All of these
would have been done by estimations: how many wildebeests are there in the herd,
how far it was to get to them, or how many people are needed to hunt them down.
We still do this today! If we walk into a fast-food restaurant at lunchtime, and you
see eight long queues of people waiting to be served, we immediately start making
evaluations and estimations about which queue should be the one for us to spend
our valuable time in to get the reward; otherwise, we estimate that it is not worth
spending time for that reward and we leave.

So, knowing that we are naturally good at estimation, how does this help when
we are working with numbers—something that we have, relatively, spent a lot
less time with?

It would appear that when it comes to numbers, we still perform estimations. When
we see two numbers beside each other, especially large numbers, our brains will make
estimates of the size of the numbers and create a ratio, though not always accurately.
Let's consider this famous set of numbers:

Anscombe's Quartet, created in 1973 by the statistician, Francis Anscombe

Just spend a minute perusing the numbers and see whether you can see anything
interesting in them.

They look reasonably similar. We might think about doing some analysis of the data
to see whether there is a major difference. Perhaps, we should average them:

Visualizing Data

[362]

Quite interestingly, it appears that each set of columns has the same average for the
X and Y values. Perhaps, we should look at the standard deviation:

Again, it appears that we have a very similar dataset indeed. Perhaps, we should
calculate the slope of the regression line for these numbers:

Statistically speaking, this is a remarkably similar dataset. I wonder how this dataset
would look if we actually graphed it:

Incredible! We have a dataset that looks quite similar on casual inspection, and even
more so when we apply common statistical functions, but when we graph it we can
see that it is completely different!

Chapter 7

[363]

Understanding picture superiority
There have been many studies into the picture superiority effect, where it is shown
that we understand and learn far better using pictures than words. For example,
a study by Georg Stenberg of Kristianstad University, Sweden, in 2006, entitled,
Conceptual and perceptual factors in the picture superiority effect, looked at memory
superiority of pictures over words.

Every study will show that we remember pictures better and that we can associate
pictures with other memory items better; we just process visual images faster than
spoken words or sentences written on a page.

A larger portion of our brain's cortex is devoted to visuals as opposed to every other
sense. This shouldn't be a surprise as we are a relatively slow and weak animal with
an inferior sense of smell and hearing compared with other animals. Our vision and
our ability to process visuals is one of the things that has made us the dominant
species on this planet.

Drawing conclusions
So, we know that humans are excellent pattern matchers. We can see patterns in
shapes and create stories from those patterns that match our experiences. However,
we are not really that great with numbers. We like to think that we are, but we often
fail to see patterns in sets of numbers.

We are quite comfortable with very small numbers, but even with slightly bigger
numbers, we will adopt a strategy of breaking them down to smaller parts to help
us understand.

We don't really get exact numbers unless we can directly experience them. For
example, for many of us, the phrase, "20 minutes", has no real meaning whereas
the phrase, "about 20 minutes", is immediately understood! This is because we
have no natural reference point for exactly how long a second or a minute is, let
alone 20 minutes, but we can reference our experience and understand exactly
how long about 20 minutes is.

So, if humans are not very good at dealing with exact numbers, what is the most
effective way of communicating with numbers? We cannot rely on people gaining
insight from a column of numbers in a spreadsheet. The only way to help us
understand numbers is to present them graphically and in context.

We really need to show people the numbers.

Visualizing Data

[364]

Designing effective visualizations
It is useful for designers of user interfaces to understand some general design
principles. It can only make them better UI designers and deliver a better
user experience.

It might seem that the positioning of elements on the screen shouldn't be that
important. Surely, it depends on the style of the Qlik developer. However, is it
important? It is important because we need to consider the person who is clicking
the mouse. The user should always be considered in any design of layout, and we
should strive for a clean design, consistency, and ease of use.

Understanding affordances
Donald Norman is a famous person in the area of design. Not in the area of data
visualization at all, but just the design of everyday things. In fact, one of his best
works is called The Design of Everyday Things.

Norman adopted a term that is now central in design: the idea of affordance.
Originally, an affordance means all of the things that an item affords you to do with
it. For example, a table affords us with many options: we can place things, sit, write
or even dance on it! Some other items have very few affordances. For example, a
button on a screen has pretty much only one: you can click on it. However, Norman
had a closer definition of this term: not all the things that are physically possible, but
the possibilities of different actions that will be immediately apparent to the person
using the item (we don't all immediately think of dancing on tables!) I like to call these
"unwritten rules": you look at something and will just know what to do with it.

A classic example of this is the known as a Donald Door because so many people
reference Donald Norman when discussing it. When we see a door that has a flat
panel on it, we don't even need to look for the word, "PUSH," above the panel,
because we know how to open that door. Similarly, when we see a door that has
a long vertical bar, our natural instinct is to grasp the bar and pull—this is the
unwritten rule. However, we are often stymied in our attempts to open such a
door until we realize that actually we need to push it. Here is an example:

Chapter 7

[365]

Image courtesy of Colman Walsh, Owner, UXTraining

This image was taken from the UX article, The Usability of Garda Doors which can be
found at http://iqcontent.com/blog/2007/01/.

Here, we see a door that users want to grab and pull, but they should grab and push.
It is clear, from the wear on the word, PUSH, on the panel, that regular users of this
door completely bypass the use of the handle and push against the panel instead.
They choose to do the natural thing and reject the unnatural.

As user interface designers, we should always think about how the user will actually
use our layouts. We might do things that cause minor irritations to users that become
major irritations over extended use. If we have difficulty getting into the mind of a
user, it is useful to engage with users and talk to them about how they like or dislike
using an interface.

Grading your screen's real estate
Not all areas of the screen are equal. Depending on the user and their connection
with the data, how they look at it will also be different, but with some similarities.

Nielsen's F
Jakob Nielsen is the cofounder, along with the aforementioned Donald Norman, of
the Nielsen Norman Group, a major design consultancy. He has done a large amount
of work in the area of user experience and has created several usability methods.

One of his experiments was to use eye-tracking equipment to track how users viewed
websites. You can refer to http://www.nngroup.com/articles/f-shaped-pattern-
reading-web-content/ for more information.

http://iqcontent.com/blog/2007/01/
http://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
http://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/

Visualizing Data

[366]

The interesting thing for us to take note of is that when users first look at a page
on the screen, their gaze is directed immediately to the top-left area of the screen.
They will spend some time here and across the top and then move down and to
the left again, but spend less time on the lower areas. The gaze pattern often looks
like the shape of the capital letter, F.

There might be a difference in other cultures; however, a learned response by web
users in those cultures might also cause them to look to the upper-left area first.

The important conclusion for us is that the upper-left area of the screen is the most
important real estate and should contain the most important information.

The Gutenberg diagram
The theory of the Gutenberg diagram, created by Edmund Arnold (1913 to 2007),
a newspaper layout designer, is that a page can be divided into four main areas
like this:

Similar to Nielsen's F pattern, the upper-left area (1) is the primary area in which
information is inserted. Unlike the F pattern, the fallow areas are taken in, but only if
the user has a level of interest in the content. In this model, the lower-right area (4) is
actually an important area because it is the area where the gaze pattern will terminate.

This technique has been used by newspaper and magazines and latterly for web
designs, and it has been shown that the terminal area is the correct area to place
items where the user might take action. In this model, the lower-left area (3) is the
least important.

Chapter 7

[367]

Preference for the right
Studies by marketing experts have shown that people are more likely to click on
action items on the right-hand side of the screen. These studies are backed up by
research by Daniel Casasanto of the Psychology Department of the University of
Chicago. Casasanto found that people who are right-handed (90 percent of us)
have a natural tendency to prefer things that are positioned to the right.

Positioning screen elements
Based on the scientific evidence, we can now derive some rules about where various
screen elements should be positioned.

Charts on the left
We know that the most important real estate on the screen is the upper-left. Therefore,
this is the area that we should place our most important information: the charts that
show the information that users need to see.

Listboxes on the right
People who are right-handed (most of us) are more comfortable clicking on things on
the right-hand side of the screen. Therefore, we should place our listboxes, the things
that users will click on, on the right-hand side of the screen.

The scientific reasons are not the only reasons why we should consider placing
listboxes on the right-hand side. Another reason to consider is the use of Qlik products
on mobile devices. Right-handed people tend to hold their devices in their left hand
and use their right hand to tap the screen. So, what happens when the listboxes are
on the left:

Visualizing Data

[368]

Every time the user has to make a new selection, their hand covers most of the
screen, so they have to then move their hand out of the way to see the effect of
the change. Now, what if the listboxes are on the right-hand side?

Now, the user can make selections and see the changes as they happen without having
to move their hand. This is a preferable situation.

Dates on top
Because of their nature, field values, such as year and month, lend themselves to
being rendered as horizontal listboxes. These are quite often rendered across the
top of the screen in QlikView applications.

It appears that this is acceptable because users will accept a certain amount of header
and navigation elements across the top of the screen and the date filters, as they are
horizontal across the top, become a part of this.

Using the layout grid
In the QlikView View menu, there is an option to turn on a design grid that assists
us with our layout (this is the default behavior in Qlik Sense). We can define the size
of the grid and the snap steps in User Preferences:

Chapter 7

[369]

We can use this design grid to help implement a grid baseline design such as those
recommended by many web designers. By setting the Line Distance and Snap Step
values appropriately and then following the rule of always keeping objects one snap
step from the edge of the grid, we can achieve a clean and consistent layout with
regular spacing between objects:

Visualizing Data

[370]

Thinking quantitatively
There is an excellent show on BBC Radio 4 called More Or Less (http://www.bbc.
co.uk/radio4/moreorless) that takes statistics that have been presented in the media
and explains or debunks them. For a show about numbers, it is quite amusing and
worth listening to. Their podcasts can be downloaded worldwide.

They have a concept on the show of "big numbers". A big number is a number
that sounds quite big, is usually quite round, but is usually presented without any
additional context. It is the kind of number that headline writers love to use and that
the More Or Less team love to debunk. There are examples of them everywhere.

The important thing to do with big numbers or any number is to put it in context.
Otherwise, we face the prospect of the dreaded SFW question.

Understanding the SFW question
SFW stands for So What. A client once explained to me the SFW question in relation
to a dashboard that was being built. If you look at a number on a dashboard, no
matter how big that number, it is completely meaningless if there is no context
around it.

One morning, TV3 News led with the story that the public prosecution service had
not pursued 2,000 cases in the previous year:

http://www.bbc.co.uk/radio4/moreorless
http://www.bbc.co.uk/radio4/moreorless

Chapter 7

[371]

Of course, 2,000 is a big number. The news article gave zero context to the number.
We don't know what types of cases they were. We don't know how many cases were
pursued and what the total was. Is the number 2,000 more or less than that of other
years, versus the crime rate of other years?

This was the lead story and presented as a major scandal. The reality is that we
should say: 2,000 cases? So what?

Every number that is presented in a Qlik application should have some context.
Whether that is a breakdown by category in a bar chart, a ratio versus a target
or previous period, or a trend over several periods, it is vital to give the users
information about where that number sits. Otherwise, the users will just be
asking, so what?

Designing dashboards
For me, the ultimate design of a dashboard is the one sitting in front of me when
I drive my car. It gives me all of the information that I need to know to be able to
manage my progress along the road.

It contains indicators vital to the current situation of the car: my speed, the engine
oil temperature, and the engine RPMs. It doesn't have any information about the
speed I was driving at the same time last week; this isn't important for me to drive
the car along the motorway right now. I don't have an indicator for the amount of
oil that I have in my engine, but this is something that I can find out by opening the
hood and checking the dipstick; something that I should do on a semiregular basis,
but not something that I need to know when I am behind the wheel.

For a business, the dashboard should be designed along the same lines. It should
only show the information needed for the users to understand what is happening
right now in their business: their key performance indicators. There should be very
limited selectability, if any, on a dashboard and there should be no date selectors.
The dashboard shouldn't show us the KPI value last week; it should show it right
now. We can provide analysis sheets for users to investigate values at different
time periods if that is important to them.

Visualizing Data

[372]

Choosing charts
When picking the chart to display numbers, there is often a balance to achieve
between effective visualization and attractive visualization. Users will appreciate
an attractive display and will get the most information out of an effective chart.
Luckily, with QlikView and Qlik Sense, we often can usually achieve both.

Categorical comparison
For a normal day-to-day comparison between different values in a category, it
is hard to beat a bar chart for simplicity and accuracy. Humans appear to have a
very good ability to discern differences in length, even if this is just a very small
difference. Bar charts beautifully encode their values by their lengths, so we can
quickly see the differences between the different categories:

Bar charts are also very effective when comparing two measures across category
values. It is important that the magnitude of the measures being compared be similar,
or they are at least expected to be similar; for example, budget versus actual, so that
they can share a common axis, and therefore, be comparable by length. We should also
be careful that if we put two bar charts side by side, the different axis lengths could
cause confusion for users and lead them to take up the wrong idea. For example,
does black tea have as much caffeine as brewed coffee?

Chapter 7

[373]

One of the things that we need to be aware of is that bar charts, as they encode
their values in their length, must always begin their axis at zero. If we are tempted
to change this, perhaps because the data doesn't look good, we are actually not
telling the truth about our data!

Back in 2007, the Quaker Oats company was making some quite interesting
claims about oatmeal and its effect on cholesterol in the body. They marketed
this with a graph showing the effect of consumption of oatmeal on cholesterol
over a four-week period:

At first glance, it appears that we should rush out and buy oatmeal! But wait!
We should notice that the axis here starts at about 195, not zero. How would it
look if we redraw with a zero axis:

Now we see that the change is not quite so drastic! The company was later forced to
remove the graph, along with some of the other more exaggerated claims.

Visualizing Data

[374]

Trend analysis
When looking at patterns of change over time, there is no better chart than the simple
line graph. While a bar chart allows us to focus on the difference between individual
bars, a line graph is all about the shape of the line: peaks and troughs:

By adding additional expressions, usually an average along with control lines based
on standard deviations, we can create a statistical control chart to look out for times
where peaks and troughs are not just normal variation:

The rules about zero on the axis that we have for bar charts do not have to be applied
to line charts. This is because the important thing about line charts is the shape of the
line, and we might need to change the axis bounds to properly see that.

Chapter 7

[375]

Comparing measures
When we are comparing measures, we can, of course, use a bar chart to juxtapose
one measure against another. However, this does not reveal whether there is any
correlation between the two measures, to see whether one measure appears to be
a driver for another. For this purpose, a scatter chart is the best choice:

As well as being able to see correlations, we can also spot outliers. We can also interact
with the chart and zoom in on areas of interest.

It can also be useful to be able to set the size of each of the bubbles based on a different
measure. We can also define the color of each bubble based on yet another measure.

Low cardinality, part-to-whole comparison
Many people quite like pie charts. There is something about them that is familiar and
comfortable about them. This is possibly because we learn things based on circles,
such as fractions and time, from a young age.

However, there are many people in the data visualization world who will tell you
that pie charts should be avoided at all costs! The respected expert, Stephen Few, has
written an interesting article that explains why pie charts should never be used, and
it can be found at http://www.perceptualedge.com/articles/08-21-07.pdf.

The equally well-respected expert, Robert Kosara, has written an equally interesting
article, In Defense of Pie Charts, which can be found at http://eagereyes.org/
criticism/in-defense-of-pie-charts.

There is merit in both arguments and both are not actually wrong. What we should
consider is not whether we should use pie charts, but what we are going to use the
pie chart for.

http://www.perceptualedge.com/articles/08-21-07.pdf
http://eagereyes.org/criticism/in-defense-of-pie-charts
http://eagereyes.org/criticism/in-defense-of-pie-charts

Visualizing Data

[376]

Pie charts are all about ratio comparison. We are trying to compare a segment with
the whole of the circle. We should not be using a pie chart to compare one segment
with another; that task is much better served by a bar chart. Consider this example:

In this example, it becomes hard to separate the different segments from each other.
It can be argued that the legend on the right-hand side delivers more information
than the pie. We might also consider whether all regions are represented on the
chart; if not, then this is not a valid part-to-whole comparison.

A pie chart should really have a low number of segments (low cardinality) so that
a user can focus on the part-to-whole comparison. Ideally, this should be just one
segment versus the whole. We should also be sure that the whole does represent
the whole and not just a selected part.

Of course, QlikView and Qlik Sense are interactive, so they do give interesting
information when we hover over the segments, and we can add additional information
to that pop up using a pop-up text expression. We can also click to make a selection
that gives additional information.

It can also be interesting to do a true part-to-whole comparison by having one segment
representing the currently selected values and the whole showing all values:

Chapter 7

[377]

You can refer to http://www.qliktips.com/2011/04/
defending-pie-charts.html for more information.

Recently, I wrote a blog post on key performance indicator approaches that included
a proposed new KPI visualization called Pie-Gauge, which can be found at http://
www.qliktips.com/2013/12/key-performance-indicator-approaches.html.

Pie-Gauge is an interesting use of pie charts. It is a part-to-whole but the whole
depends on whether we have exceeded the target or not. If not, the whole is the
target value and we have a segment representing the shortfall. If we have exceeded
the target, then the whole is the actual value and we have a segment representing
the amount by which we have exceeded the target:

Tabular information
The straight table is a very powerful tool to represent actual numbers. In general, it
will be used to show several calculations versus one-dimension category. However,
we know that raw numbers are not always processed well by humans, so we can add
additional graphical elements to aid understanding:

We can see two uses of horizontal gauge here: one with an indicator and one using
the Fill to Value setting to represent a bar chart. We also have a sparkline, which
is an example of a mini line chart that shows just the trend of a value over a period
without showing magnitudes. We also see a whisker chart here that shows values
above or below a value, in this case, budget and over time.

http://www.qliktips.com/2011/04/defending-pie-charts.html
http://www.qliktips.com/2011/04/defending-pie-charts.html
http://www.qliktips.com/2013/12/key-performance-indicator-approaches.html
http://www.qliktips.com/2013/12/key-performance-indicator-approaches.html

Visualizing Data

[378]

Another visual that we can add in straight tables is setting the color of the text to
indicate positive or negative results.

Using color
It is good to use color in charts, but it is important to consider how we are going to
use it and what we are going to do with it.

Color should have meaning
We have an option in QlikView to turn on Multicolor as an option in some charts.
This will give us a pleasant result:

However, we should consider whether there is any additional information given to
the user by adding this option. If the chart has only one color, it looks like this:

The chart with only one color gives the same information as the chart with multicolors.
In fact, it can be argued that the chart with all the colors might actually add some
confusion to what should be a simple chart.

Chapter 7

[379]

We should, perhaps, learn a lesson from nature. Things that stand out from the
background can be seen. Things that stand out more than other objects will be
noticed even more. However, if everything is standing out, then nothing will
come to the forefront of our attention.

If we use softer colors for most of our bars, with a plain white background, then
we can see those bars very well. If we need one of the bars to stand out, because
it needs some action, then we can have just that bar can have a stronger color to
attract attention:

In a QlikView chart, we can specify a calculation for the background
color of an expression by clicking the + button beside the expression
and entering a color expression for the background.

What does RAG mean?
Many businesses will implement a RAG system for dashboards, where they use red
for bad, amber for slightly bad, and green for okay. We should challenge this and ask
what the action is, that is, what behavior do we want to drive?

Visualizing Data

[380]

Anything that is okay should probably have no coloring at all. This means that other
areas are easier to find. Anything that is bad can remain red and should be a call to
action to have users click and discover.

But what about amber? We really need to think about this. Do we want users to click
and discover? If so, then perhaps it should be red. If not, perhaps it should have no
color at all.

So, instead of RAG, perhaps we should be implementing R.

The ink-to-data ratio
The ink-to-data ratio is a term coined by Edward Tufte in his 1983 book, The Visual
Display of Quantitative Data. Of course, back in 1983, Tufte was not talking about
displaying something on the computer screen but on printed reports. Therefore, he was
talking about ink and not pixels. Perhaps, we can restyle it as the pixel-to-data ratio.

What this ratio means is that any pixel that is not representing data needs to justify
its existence. If it is not useful, then it should be removed. Consider this table:

We have some common elements here: background color, striped rows, and
grid lines. By making a few tweaks to the Style tab of this chart, we can clean
up superfluous pixels:

Chapter 7

[381]

We can see that the background color has been removed completely. The vertical
grid lines have also been removed as the white areas in between the columns act
as very effective separators. The horizontal grid lines have been left but are now
almost transparent; they serve as effective guidelines, but are not impactful in the
cleaner display.

It is not just in tables that we should keep things clean. In bar charts, there are
options to have backgrounds on the display area and lines around the bars:

These are really superfluous and unnecessary in a clean chart:

Visualizing Data

[382]

Color blindness
Color blindness is something that affects up to eight or nine percent of the male
population. It is almost exclusively a male issue, as female color blindness is extremely
rare, and the colors affected are, in the majority, between red and green.

Of course, when we consider things such as RAG beacons on dashboards, we can
see that there might be problems for quite a large number of people in even seeing
data. We should really be aware of this and consider the colors that we choose for
different purposes.

A great resource for color selection is the Color Brewer website:
http://www.colorbrewer2.org.

This website suggests color ranges that we can use, including color-blind-safe
selections.

In general, we should avoid juxtaposing green and red. If we are using diverging
hues, we should not use green and red and instead use blue along with either green
or red. This gives most people the greatest chance of seeing the data.

Using maps
A lot of data that we deal with might have a spatial component. This could be a
post code or address that can be geocoded, or we might already have latitude and
longitude information. Just because we have this, it doesn't mean that we need to
plot the information on a map!

While the data might have a spatial component, it usually doesn't have a special
dependency; it doesn't really matter to our analysis exactly where the data occurred.
In these cases, a map is just a pretty display, while a bar chart is a better option.

http://www.colorbrewer2.org

Chapter 7

[383]

Quite often, people use colored areas on a map to indicate information. This is
known as a choropleth, the classic example being used with US election polls
and results:

US election results

The image is taken from http://elections.huffingtonpost.com/2012/results.

http://elections.huffingtonpost.com/2012/results

Visualizing Data

[384]

If we look at this map, with large swathes of red, we might be surprised that Obama
won the election! The problem is that quite a lot of the land area of the US, especially
in the mid-west, has a low population, so contributes less votes to the overall result.
The New York Times came up with a novel approach to solving this—resizing the
states based on electoral vote size:

Image from the New York Times electoral coverage

This image is taken from http://elections.nytimes.com/2012/ratings/
electoral-map/.

One other issue that we must consider with the use of maps is the general level of
education. Several studies have shown that a percentage of the population is unable
to correctly identify states and countries on a map. Consider whether a simple bar
chart would be more appropriate.

http://elections.nytimes.com/2012/ratings/electoral-map/
http://elections.nytimes.com/2012/ratings/electoral-map/

Chapter 7

[385]

Summary
This has been quite an interesting chapter because a lot of the content wasn't true!

We can have some confidence about the historical information. We found out that the
beginnings of data visualization started with mathematics and analytical geometry.
Once the use of charts was established—largely by Joseph Priestly and then followed
by William Playfair—their use became more and more commonplace as useful ways
of telling stories with data.

We should have a better understanding of our audience. Of course, this can only apply
to most of our audience because there are always outliers.

Design guidelines are never set in stone. What is correct in design today will have
changed tomorrow—just look at the iPhone. However, fundamentals will not change
and we should be aware of them.

We have reached the end of the road for this book. By now, hopefully, your Qlik
education will have advanced towards mastery. Of course, you will not become a
master until you start to implement these practices and even create your own best
practice. Let's hope that this book is a good foundation.

Index
A
Above function 271
additive facts 101
administrative metadata 192-194
advanced aggregations

Aggr, used for calculating control chart 277
calculated dimensions 278
creating, with Aggr 275-277
nodistinct option, avoiding 279, 280

advanced search 239
advanced Table File Wizard options

Crosstable wizard, using 332-334
examining 328
transformation step, enabling 328

affordances 364, 365
After function 271
Aggr

advanced aggregations,
creating with 275-277

used, for calculating control chart 277
Aggregate operator 182
Alternate States

used, as identifiers 270
ApplyMap

basic functionality, reviewing 92-94
data, mapping with 92
data optimization,

by removing keys 29-31
using, of Join with duplicate rows 95, 96

artifacts
about 165
Configurations 166
Connections 165
Dataflows 165
Datascript Modules 166

Deployment Packages 166
External Files 166
Library References 166
Lookup Tables 166
Operator Templates 166
Schemas 165
Types 165

As
used, for renaming fields 200

associative model 70
associative search 237, 238
Atomic type

creating 171, 172
audience

understanding 357
AutoGenerate() function 15, 320, 321
automatic interpretation, of searches 241
AutoNumber function

about 151
used, for creating composite keys 78-80

B
basic concepts

reviewing 234
basic dataflow

creating 179
packaging 179

basic data modeling
data, associating 70
data, joining 82
facts, calculating at level of table 80-82
reviewing 70
tables, associating automatically 71

basic performance tuning techniques
number of columns, reducing 10

[388]

number of rows, reducing 9
reviewing 9, 13
synthetic keys, resolving 12, 13
text keys, replacing with numbers 11, 12
unneeded data, removing 9

Before function 271
Below function 271
bookmarks

about 243
managing 245
options 244
saving 243, 244

bookmarks, options
Include Input Field Values 244
Include Layout State 244
Include Scroll Position 244
Include Selections in Bookmark 244
Info Text 244
Make bookmark apply on top of

current selection 244
Make this bookmark a document

(server) bookmark 244
Pop-Up Message 244
Share Bookmark with Other Users 244

Bottom function 271
branching, with conditional statements

about 317-319
If … Then … ElseIf 317, 318
Switch … Case 319
Unless statement 320
When statement 320

Buffer operator 182
business process 108

C
caching, QlikView

URL, for blog 36
calculated dimensions 278
calculations

data islands 252, 253
flag arithmetic 250, 251
limiting 249
set 253-255
Set Analysis 253
Sum of If 249, 250
variables, using for 251, 252

calendar dimension
creating 110-112

Cartesian join
about 85
example 86

chart calculation times
optimizing 46

chart expressions
two-step process, following 260, 261

chart performance, testing for different
load options

about 34-36
cache, turning off 36, 37
chart calculation time, examining for

different scenarios 38, 39
numbers, optimizing 44-46
performance, optimizing by combining

fact tables 42-44
performance, optimizing by creating

counter fields 39-41
charts

educating with 348
inventing 349-351

charts, descriptive metadata
commenting in 212
dimensions, commenting 212
expression comment, entering 213

charts selection
about 372
categorical comparison 372, 373
low cardinality 375
measures, comparing 375
part-to-whole comparison 375-377
tabular information 377
trend analysis 374

classic star schema 99
code

reusing 340
color

ink-to-data ratio 380, 381
RAG system 379
using 378

color blindness 382
Color Brewer

URL 382
ColumnNo function 271

[389]

common expressions
holding, variables used 247, 248

components, Expressor
data integration engine 159
repository 159
Studio 159

composite keys
creating 75
creating, AutoNumber function

used 78-80
creating, Hash function used 77, 78
creating, string concatenation

used 75-77
Composite type

creating 172-174
Concat

using, with Dollar-sign Expansion 269
Concatenate

dissimilar files, loading with 138
reviewing 89, 90
versus Join 90, 91

concatenation
similar files, loading with 138

Configurations artifact 166
conformed dimensions

about 106, 143
creating 143

Connect button
using 293, 294

Connections
configuring 166

Connections artifact 165
connection types

Database 167-169
File 167, 168
QVX Connector 167

Connect To statement 295, 296
contents

loading, of QVW 158
control chart

calculating, Aggr used 277, 278
control structures

branching, with conditional statements 317
exiting 325
looping, in script 320
ScriptError 327

using 317
variables, using for error handling 326

Copy operator 182
Cos() function 20
Crosstable wizard

using 332-334
custom driver 293
Customer extract

setting up, in Mockaroo 14

D
dashboards

designing 371
data

associating 70
joining 82
loading, from QlikView 137
mapping, with ApplyMap 92
obtaining 136, 137
optimal loading, from QVD 304
viewing, from different directions 335

database connection
about 167-169, 292
driver types 293

database management system. See DBMS
data extraction, ETL approach

about 147
extractor folder structure, creating 147, 148
extractors, executing 149
script types, differentiating 148, 149

dataflow
creating 183
packaging 188

Dataflow artifact 165
dataflow toolbox

about 179
Inputs 179
Outputs 180, 181
transformers operator 181
Utility 182

Data Interchange Format (DIF) 287
data islands 252, 253
data loading concepts

compression settings 303, 304
data, loading from QlikView 137
data, obtaining 136, 137

[390]

dissimilar files, loading with
Concatenate 138

dissimilar files, loading with For Each 138
reviewing 136
similar files, loading with

concatenation 138
tables, storing to QVD 140

data load steps, ETL approach
about 151
executing 152
UserApp folder structure, creating 151

Datascript Modules artifact 166
data storage, QlikView

about 20
data tables 21, 22
great primer 20
memory statistics, exporting

for document 22-24
data transformation, ETL approach

about 149
model folder structure, creating 150
transformer folder structure, creating 150
transformers, executing 150, 151

datatypes, QlikView
dual 136
numeric 136

data visualization
geometry, analyzing 345
history, reviewing 344
stories, telling with diagrams 347

DBMS 70
delimited files 286-288
Deployment Packages artifact 166
descriptive metadata

about 192-194
commenting, in charts 212
commenting, on tables 211
document-level information, adding 195
establishing 194
field comments, adding 210
fields, naming 198
fields, renaming 198
fields, tagging 205-207
qualified fields, renaming

automatically 213-216
tables, renaming 211
Tag statement, used for tagging field 207

dimensional data modeling 96, 97
dimensional facts

creating 116
dimensions

denormalizing 106
versus facts 97

dimension tables
designing 106

dimension values
generating 14

Direct Discovery
example 54, 55
restrictions 52
syntax 53
using 51

direct field comparison 269
DirList function 324
dissimilar files

loading, with Concatenate 139
loading, with For Each 139

Do … Loop statement 325
document

memory statistics, exporting for 22-24
Document Analyzer tool

URL, for downloading 10
document chaining

overview 131, 132
document-level information,

descriptive metadata
adding 195
Document Properties window 196
document, without additional

metadata 195
Management Console 196, 197

document licenses 253
Document Properties window 196
Dollar-sign Expansion

about 248, 257, 258
applying, in script 308-310
Concat, using with 269
nesting 314, 315
parameters, using with 262
two-step process, following 258
used, with Set Analysis 268
variables, using in expressions 262
variables, using with 248, 249

[391]

driver types, database connection
custom 293
ODBC 293
OLEDB 293

dual 85
duplicate key values effect

on joins 86-88

E
E element function

using 269
effective visualizations

affordances 364, 365
charts, selecting 372
color, using 378
dashboards, designing 371
designing 364
maps, using 382-384
quantitative thinking 370
screen, designing of real estate 365-367
screen elements, positioning 367

Enable Transformation Step option
about 328
Column feature 331
Context tab 331
Fill tab 330
Garbage tab 330
Rotate function 332
Unwrap function 332

Enterprise Data Warehouse (EDW) 96
ErrorMode variable

about 327
values 327

ETL approach
about 135
advantages 142
common business rules, applying across

multiple documents 143
conformed dimensions, creating 143
Expressor, using for 159, 160
extracted data, reusing in multiple

documents 143
overall data loading, speeding up 142
self-service data layer, provisioning 144
used, for creating QVD data layers 144, 145

ETL approach, QVD data layers
data, extracting 147
data, loading 151
data, transforming 149
StoreAndDrop subroutine, creating 146

example execution
running 58-65

Exists clause
used, for loading QVD 305, 306

expressions
variables, using in 262

Expressor
about 135
benefits 160
components 159
using, for ETL 159, 160

extensions
managing 162, 163

External Files artifact 166
extractor folder structure

Includes subfolder 148
QScript subfolder 148
QVD subfolder 148

Extract, transform, and load.
See ETL approach

F
factless fact tables 103
facts

additive 101
non-additive 101
semi-additive 101
summing with 101
versus dimensions 97

fact table rows
generating 15-17

fact tables
about 101
concatenating 126
dealing, with nulls 103-105
factless fact tables 103
grain, modifying of 126
joining 125
linking, of different grains 128-131
periodic snapshot fact tables 102
transaction fact tables 102

[392]

Fertile Crescent
URL 359

field comments, descriptive metadata
adding 210

Field Data button 285
field renaming considerations,

descriptive metadata
dimensions 199
key fields 199
measures 200

fields
comparing, between states 270
preloading, into QVDs 306-308

fields, descriptive metadata
guidelines, for renaming 199
hiding 209
hiding, automatically based on

prefix or suffix 209
hiding, tagging used 210
naming 198
Qualify, using 200-203
renaming 198
renaming, As used 200
renaming, mapping table used 204
renaming, Rename used 203
tagging 205-207
tagging, mapping table used 208, 209
tagging, Tag statement used 207

fields, Set Analysis
Concat, used with Dollar-sign

Expansion 269
direct field comparison 269
E element function, using 269
P element function, using 269

FieldValueCount function 302
File connection

about 167
configuring 167, 168

FileList function 324
files

loading, relative paths used 285, 286
Filter operator 183
First function 271, 336
FirstSortedValue function 336

-From parameter 119
1 parameter 119

Distinct parameter 119
Territory parameter 119

fixed width files 288, 289
flag arithmetic 250, 251
Floor() function 136, 311
For … Next loops 321-323
Force 32 Bit option 296
For Each

dissimilar files, loading with 139
For Each … Next loops

about 323
DirList function 324
FileList function 324

French discord 346, 347
from/to dates

managing, hash used 122-124
functions, for counting records

FieldValueCount 302
NoOfColumns 302
NoOfRows 302
RecNo() 299, 300
RowNo() 300, 301

Funnel operator 183
fuzzy search 237

G
geometry, analyzing

French discord 346, 347
Grecian influences 345

grain
about 98
fact tables, linking of 128-131
modifying, of fact table 126

Grecian influences 345
Gutenberg diagram 366

H
hash

used, for managing from/to
dates 122-124

Hash function
used, for creating composite keys 77, 78

HierarchyBelongsTo function
AncestorID parameter 115
AncestorName parameter 115

[393]

DepthDiff parameter 115
NodeID parameter 115
NodeName parameter 115
parent associations, creating with 115
ParentID parameter 115

Hierarchy function
Depth parameter 113
leaves, creating with 112-114
NodeID parameter 113
NodeName parameter 113
ParentID parameter 113
ParentName parameter 113
PathDelimiter parameter 113
PathName parameter 113
PathSource parameter 113

HTML files 291, 292

I
identifiers

1 263
$ 263
$_n 264
$n 263
Alternate States, using as 270
Bookmark (ID or name) 264
identifying 263
State name 264

If … Then … ElseIf construct 317, 318
incremental data load

about 152
deletions, handling from source system 156
running, on data addition 155
running, on data modification 156
script, establishing for basic

process 153, 154
situations, handling 156

Infographics
creating 351, 352

ink-to-data ratio 380, 381
inner join 83
Inputs toolbox, dataflow

Read Custom operator 180
Read Excel operator 180
Read File operator 180
Read Lookup Table operator 180

Read QlikView operator 180
Read QVX Connector operator 180
Read Table operator 180
SQL Query operator 180

installation, JMeter 56
installation, scalability tools 57
inter-record function

using 271, 272
IntervalMatch function

using, with SCDs 119-122

J
JMeter

about 55
installing 56
scalability, testing with 55
URL, for latest version of Java runtime 56
URL, for obtaining from Apache website 56
URL, for older version 56

Join
about 83, 182
versus Concatenate 90, 91

join model 70
joins

Cartesian join 85, 86
inner join 83
left join 84
outer join 85
right join 84

K
Keep 83, 88
key collision

URL 77
Kimball dimensional modeling 96
Kimball four-step dimensional

design process
business process, selecting 108
defining 108
dimensions, identifying 109
facts, identifying 109
grain, declaring 109

Kimball Group
online resources 97

[394]

L
Last function 271
late arriving dimension values

dealing with 107, 108
leaves

creating, with Hierarchy
function 112-114

left join 84
LET

versus SET 245-247
libraries

working with 164
loading techniques

contents, loading of QVW 158
data, loading incrementally 152
data model, reloading partially 157
mastering 152

Lookup Tables artifact 166
looping, in script

about 320
AutoGenerate 320, 321
Do … Loop 325
For … Next loops 321-323
For Each … Next loops 323

Lua
URL 160

M
mapping table

used, for renaming fields 204
used, for tagging field 208, 209

maps
using 382, 384

Massive Open Online Course (MOOC) 356
memory statistics

exporting, for document 22-24
meta 192
metadata

about 192
administrative 192-194
descriptive 192-194
extracting 216
extracting, from QVD 217
extracting, from QVW 218-226
structural 192, 193

structure, exploring 216
metadata intelligence 159
missing dimension values

dealing with 107, 108
Mockaroo

Customer extract, setting up 14
URL 14

modifiers
defining, as sets 264, 265

Moore's Law 7
More Or Less

URL 370
multiple fact tables

dealing with 124
multiple listboxes search 242
multiple values search 241
Multi-Transform operator 182

N
NoConcatenate keyword 90
nodistinct option

avoiding 279-281
non-additive facts 101
NoOfColumns function 271, 302
NoOfRows function 271, 302
normal search

about 236
example searches 237

Now() function
about 311
parameters 311

numbers
mapping 94, 95

numeric fields search
about 240
numeric search option 240

Num() function 311

O
ODBC 293
OLEDB 293
Operational Information QlikView

Governance Dashboard
reviewing 230

Operator Templates artifact 166

[395]

options, QlikView Governance Dashboard
configuring 228, 229
Documents 229
Multi-cluster Reload? 229
Operational Logs 229
Profile 229
Repository Path 229
User Configuration Script? 229

outer join 85
Outputs toolbox, dataflow

about 180
Trash operator 181
Write Custom operator 181
Write Excel operator 181
Write File operator 181
Write Lookup Table operator 181
Write Parameters operator 181
Write QlikView operator 181
Write Table operator 181
Write Teradata PT operator 181

P
parameters

passing, to variables 315, 316
used, with Dollar-sign Expansion 262
used, with variables 262

parameters, Peek function
Field name 338
Row index 338
Table name 338

parent associations
creating, with HierarchyBelongsTo

function 115
partial reloading

about 157
new rows, adding to table 157
script execution, managing 158
table, replacing 157

Peek function
about 338, 339
parameters 338

P element function
using 269

periodic snapshot fact tables 102
picture superiority 363
Pie-Gauge 377

Pivot Column operator 182
Pivot Row operator 182
Previous function 337
profiles, QlikView Governance Dashboard

managing 227, 228
projects

working with 164
properties, Read File operator

Connection 185
Error handling 185
File name 185
Mapping 185
Name 185
Quotes 185
Schema 185
Show errors 185
Skip rows 185
Type 185

Q
Qlik Community

URL 52
Qlik Design Blog

URL 15, 20
QlikView

about 136, 233
data, loading from 137
data storage 20
history 7, 8
reference link, for books 341
URL 14
URL, for web design blog 39
variables, using 245

QlikView calculation engine
about 46, 47
chart, sorting for well-known conditions 50
flags, creating for well-known

conditions 47-49
QlikView Components library

URL 341
QlikView Data files. See QVD files
QlikView File button 284
QlikView Governance Dashboard

about 227
application information, analyzing 231
deploying 227

[396]

Operational Information, reviewing 230
options, configuring 228, 229
profiles, managing 227, 228

QlikView Server cache
URL 159

qualified fields, descriptive metadata
renaming, automatically 213-216

Qualify
using 200-203

QVD
bit-stuffed data table 139
fields, preloading into 306-308
loading, Exists clause used 305, 306
metadata, extracting from 217
symbol tables 139
tables, storing to 140
XML header 139

QVD data layers
creating, ETL approach used 144, 145

QVD files
about 139
using 141

QVD/QVX files 292
QVW

contents, loading of 158
metadata, extracting from 218-226

QVX Connector connection
about 167
creating 169-171

QVX output
creating 187, 188

R
RAG system 379
Rand() function 15
range function

using 271, 272
Read Custom operator 180
Read Excel operator 180
Read File operator

about 180
configuring 184
properties 185

Read Lookup Table operator 180
Read QlikView operator 180
Read QVX Connector operator 180

Read Table operator 180
RecNo() function 299, 300
records

counting 299
relative paths

used, for loading files 285, 286
Rename

used, for renaming fields 203
repository workspace 161
reusable dimension methods

about 110
calendar dimension, creating 110-112
hierarchies, unwrapping 112
parent associations, creating with

HierarchyBelongsTo function 115
right join 84
RowNo() function 271, 300, 301
rows

concatenating 89
rules, for dealing with humans

conclusions, drawing 363
numbers, counting 358, 359
numbers, estimating 359-362
patterns, matching 357, 358
picture superiority 363

S
scalability

testing, with JMeter 55
scalability tools

analyzer 58
installing 57
obtaining 56
script executor 58
script generator 58

SCDs
FirstSortedValue, used for taking most

recently changed record 118, 119
handling 117
hash, used for managing from/to

dates 122-124
IntervalMatch function,

using with 119-122
URL 117

schema
configuring 174-179

[397]

Schemas artifact 165
screen elements, positioning

about 367
charts, on left 367
dates, on top 368
layout grid, using 368, 369
listboxes, on right 367, 368

script
Dollar-sign Expansion,

applying in 308-310
exiting 325, 326
variables, applying in 308-310

script constructs
exiting 326

script debugger
two-step process, following in 259, 260

ScriptErrorCount variable 327
ScriptErrorList variable 327
ScriptError variable 327
script, types

complex, high frequency 149
low frequency 148
simple, high frequency 148

searches
used, in Set Analysis 267

searching, in QlikView
about 234, 235
automatic interpretation, of searches 241
multiple listboxes search 242
multiple values search 241
numeric fields search 240
text-based search 235, 236
wildcard search 236

Select wizard 297-299
self-service data layer

provisioning 144
semi-additive facts 101
set

about 253-255
set identifiers 255, 256
set modifiers 256, 257

SET
versus LET 245-247

Set Analysis
about 39, 253
Dollar-sign Expansion, using with 268
identifiers, identifying 263

modifiers, defining as sets 264, 265
other fields, comparing 268
searches, using 267
Set arithmetic 265, 266
using 263
with Alternate States 270

Set Analysis, with Alternate States
Alternate States, used as identifiers 270
fields, comparing between states 270

set arithmetic operators
- (Exclusion) 266
* (Intersection) 266
/ (Symmetric difference) 266
+ (Union) 265
about 265, 266

set identifiers
{1} 255
{$} 255
about 255, 256

SET keyword 246
set modifiers 256, 257
SFW question 370
similar files

loading, with concatenation 138
Sin() function 20
slowly changing dimensions. See SCDs
snowflake schema 100
Sort operator 183
SQL Query operator 180
standalone workspace 161
star schemas 99
states

fields, comparing between 270
state space 46
StoreAndDrop subroutine

creating 146
stories, with diagrams

charts 348
charts, inventing 349-351
data visualization, using 353, 356
Infograph, creating 351, 352

strategies, for reducing data size /
performance improvement

about 24
data, optimizing by removing keys 29-31
field values, optimizing 24-29
keys, optimizing 24-29

[398]

memory, optimizing by removing low
cardinality fields 32-34

performance optimization,
by removing keys 31

string concatenation
used, for creating composite keys 75-77

structural metadata 192, 193
subroutines

about 316
example 316

Sum function 101
Sum of If 249, 250
surrogate keys 106
Switch … Case construct 319
synthetic key

about 72
benefits 73
example 72, 73

T
Table Files Wizard

delimited files 286-288
fixed width files 288, 289
HTML files 291, 292
QVD/QVX files 292
relative paths, used for

loading file 285, 286
using 284
XML files 289, 290

tables
associating, automatically 71
storing, to QVD 140

tables, descriptive metadata
commenting on 211
renaming 211

tagging
used, for hiding fields 210

Tag statement
used, for tagging field 207

test data
dimension values, generating 14
fact table rows, generating 15-17
generating 13

text-based search
about 235, 236

normal 235
wildcard 235

The Data Warehouse Toolkit
URL 144

TimeStamp() function 312
Today() function

about 311
parameters 311

Top function 271
Total qualifier

applying 273, 274
Trace statement 260
transaction fact table 102
Transformation operation

configuring 185-187
transformer operator, dataflow

Aggregate 182
Join 182
Multi-Transform 182
Pivot Column 182
Pivot Row 182
Transform 182

Trash operator 181
two-step process

following 258
following, in chart expression 260, 261
following, in script debugger 259, 260

types
Atomic type 171, 172
Composite type 172-174
configuring 171

Types artifact 165

U
Unique operator 183
Unless statement 320
Untag statement 208
use cases, variables

dates, holding 311, 312
paths, holding 312

utility operators, dataflow
about 182
Buffer 182
Copy 182
Filter 183
Funnel 183

[399]

Sort 183
Unique 183

V
variables

about 245
applying, in script 308-310
parameters, passing to 315, 316
parameters, using with 262
SET versus LET 245-247
use cases 310-312
used, for calculations 251, 252
used, for holding common

expressions 247, 248
used, in expressions 262
used, with Dollar-sign

Expansion 248, 249
values, examining during

reloads 313, 314
vertical calculation

advanced aggregations, creating
with Aggr 275, 276

inter-record function, using 271, 272
range function, using 271, 272
Total qualifier, applying 273, 274

W
Web Files button 284
When statement 320
wildcard search

about 236
advanced search 239
associative search 237, 238
characters 236
example searches 236
fuzzy search 237
normal search 236

workspace
about 161
creating 161, 162
repository workspace 161
standalone workspace 161

Write Custom operator 181
Write Excel operator 181
Write File operator 181
Write Lookup Table operator 181
Write Parameters operator 181
Write QlikView operator 181
Write Table operator 181
Write Teradata PT operator 181

X
XML files 289, 290

Thank you for buying
Mastering QlikView

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

QlikView for Developers
Cookbook
ISBN: 978-1-78217-973-3 Paperback: 290 pages

Discover the strategies needed to tackle the most
challenging tasks facing the QlikView developer

1. Learn beyond QlikView training.

2. Discover QlikView Advanced GUI
development, advanced scripting,
complex data modeling issues, and
much more.

3. Accelerate the growth of your QlikView
developer ability.

4. Based on over 7 years' experience of
QlikView development.

QlikView Scripting
ISBN: 978-1-78217-166-9 Paperback: 138 pages

Your comprehensive guide to scripting powerful
QlikView applications

1. Understand everything about QlikView,
from structuring a script to fixing it to
charting object problems.

2. Packed full of information and code examples
to help you to understand the key concepts
and features of QlikView.

3. Informative screenshots help you navigate
QlikView's scripting menus and dialogs.

Please check www.PacktPub.com for information on our titles

QlikView 11 for Developers
ISBN: 978-1-84968-606-8 Paperback: 534 pages

Develop Business Intelligence applications with
QlikView 11

1. Learn to build applications for Business
Intelligence while following a practical
case—HighCloud Airlines. Each chapter
develops parts of the application and it
evolves throughout the book along with
your own QlikView skills.

2. The code bundle for each chapter can be
accessed on your local machine without
having to purchase a QlikView license.

3. The hands-on approach allows you to build a
QlikView application that integrates real data
from several different sources and presents it
in dashboards, analyses, and reports.

Instant QlikView 11 Application
Development
ISBN: 978-1-84968-964-9 Paperback: 60 pages

An intuitive guide to building and customizing
a business intelligence application for your data

1. Learn something new in an instant!
A short, fast, focused guide delivering
immediate results.

2. Learn how to analyze data for business
discovery with QlikView 11 with automatic
data linking and wizards.

3. Create your own analysis interfaces using
tables, lists, and charts.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Performance Tuning and Scalability
	Reviewing basic performance tuning techniques
	Removing unneeded data
	Reducing the number of rows
	Reducing the number of columns

	Replacing text keys with numbers
	Resolving synthetic keys
	Reviewing the basics

	Generating test data
	Generating dimension values
	Generating Fact table rows

	Understanding how QlikView stores
its data
	A great primer
	Looking at things from a simple level
	Exporting the memory statistics for a document

	Strategies to reduce the data size and improve performance
	Optimizing field values and keys
	Optimizing data by removing keys using ApplyMap
	Optimizing performance by removing keys by joining tables
	Optimizing memory by removing low cardinality fields

	Testing chart performance for different load options
	Turning the cache off
	Examining chart calculation time for different scenarios
	Optimizing performance by creating counter fields
	Optimizing performance by combining fact tables?
	Optimizing your numbers

	Optimizing chart calculation times
	The QlikView calculation engine
	Creating flags for well-known conditions
	Sorting for well-known conditions

	Using Direct Discovery
	Direct Discovery restrictions
	Direct Discovery syntax
	Looking at an example Direct Query

	Testing scalability with jMeter
	Obtaining the scalability tools
	Installing jMeter
	Installing the scalability tools
	About the scalability tools

	Running an example execution
	Summary

	Chapter 2: QlikView Data Modeling
	Reviewing basic data modeling
	Associating data
	Automatically associating tables
	Understanding synthetic keys
	Creating composite keys

	Realizing that facts are calculated at the level of their table
	Joining data
	Understanding Join and Keep
	Concatenating rows
	Reviewing Concatenate
	Mapping data with ApplyMap
	Reviewing the basic functionality of ApplyMap
	Mapping numbers

	Dimensional data modeling
	Differentiating between facts and dimensions
	Understanding the grain
	Understanding star schemas
	Summing with facts
	Discovering more about facts
	Transaction fact tables
	Periodic snapshot fact tables
	Factless fact tables

	Dealing with nulls in fact tables in QlikView
	Designing dimension tables
	Denormalizing dimensions and conformed dimensions
	Understanding surrogate keys
	Dealing with missing or late arriving dimension values

	Defining the Kimball four-step dimensional design process
	Selecting the business process
	Declaring the grain
	Identifying the dimensions
	Identifying the facts

	Learning some useful reusable dimension methods
	Creating a calendar dimension
	Unwrapping hierarchies
	Creating parent associations with HierarchyBelongsTo

	Creating dimensional facts

	Handling slowly changing dimensions
	Taking the most recently changed record using FirstSortedValue
	Using IntervalMatch with SCDs
	Using hash to manage from/to dates

	Dealing with multiple fact tables in
one model
	Joining the fact tables together
	Concatenating fact tables

	Changing the grain of a fact table
	Linking fact tables of different grains

	Drilling across with document chaining
	Summary

	Chapter 3: Best Practices for Loading Data
	Reviewing data loading concepts
	Getting data from anywhere
	Loading data from QlikView
	Loading similar files with concatenation
	Loading dissimilar files with Concatenate and For Each
	Understanding QlikView Data files
	Storing tables to QVD
	Using QVD files

	Understanding why you should use an ETL approach
	Speeding up overall data loading
	Reusing extracted data in multiple documents
	Applying common business rules across multiple documents
	Creating conformed dimensions
	Provisioning a self-service data layer

	Using an ETL approach to create QVD data layers
	Creating a StoreAndDrop subroutine
	Extracting data
	Creating an extractor folder structure
	Differentiating types of scripts
	Executing the extractors

	Transforming data
	Creating a transformer and model folder structure
	Executing the transformers

	Loading data
	Creating a UserApp folder structure
	Executing the load step

	Mastering loading techniques
	Loading data incrementally
	Establishing the script for the basic process
	Running an incremental load when data is
only added
	Loading incrementally when data may be modified
	Handling deletions from the source system
	Handling situations where there is no modify date

	Partially reloading only one part of the
data model
	Replacing a table
	Adding new rows to a table
	Managing script execution in partial reloads

	Loading the contents of another QVW

	Using QlikView Expressor for ETL
	Introducing Expressor
	Understanding why to use Expressor for ETL
	Understanding workspaces, libraries, projects, and artifacts
	Creating a workspace
	Managing extensions
	Working with libraries and projects
	Understanding artifacts

	Configuring Connections
	Configuring a File connection
	Connecting to a database
	Creating a QVX Connector Connection

	Configuring types and schemas
	Adding additional Atomic types
	Creating Composite types
	Configuring a schema

	Creating and packaging a basic dataflow
	Understanding the dataflow toolbox
	Creating the dataflow
	Packaging the dataflow

	Summary

	Chapter 4: Data Governance
	Reviewing basic concepts of data governance
	Understanding what metadata is
	Structural metadata
	Descriptive metadata
	Administrative metadata

	Establishing descriptive metadata
	Adding document-level information
	Documents without any additional metadata
	Document Properties
	Management Console

	Naming and renaming fields
	Guidelines to rename fields
	Renaming fields using As
	Using Qualify
	Renaming fields using Rename
	Using a mapping table to rename fields

	Tagging fields
	Using the Tag statement to tag a field
	Tagging fields using a mapping table
	Hiding fields

	Adding field comments
	Renaming and commenting on tables
	Commenting in charts
	Commenting dimensions
	Entering an expression comment

	Automatically renaming qualified fields

	Extracting metadata
	Exporting the structure
	Extracting from QVD
	Extracting from QVW

	Deploying the QlikView Governance Dashboard
	Managing profiles
	Configuring the Dashboard options
	Reviewing operational information
	Analyzing application information

	Summary

	Chapter 5: Advanced Expressions
	Reviewing basic concepts
	Searching in QlikView
	Searching for text
	Wildcard search
	Searching numeric fields
	Automatic interpretation of searches
	Multiple values search
	Searching in multiple listboxes

	Understanding bookmarks
	Saving a bookmark
	Managing bookmarks

	Using variables in QlikView
	SET versus LET
	Using variables to hold common expressions
	Using variables with Dollar-sign Expansion

	Limiting calculations
	Sum of If
	Flag arithmetic
	Calculations using variables
	Data islands
	Set Analysis
	Explaining what we mean by a set

	Understanding Dollar-sign Expansion
	Following the two-step process
	Following the steps in the script debugger
	Following the steps in a chart expression
	Understanding when the steps happen in chart expressions

	Using parameters with variables and
Dollar-sign Expansion
	Using variables in expressions

	Using advanced Set Analysis
	Identifying the identifiers
	Understanding that modifiers are sets
	Set arithmetic
	Using searches in Set Analysis
	Using Dollar-sign Expansion with Set Analysis
	Comparing to other fields
	Direct field comparison
	Using Concat with Dollar-sign Expansion
	Using the P and E element functions

	Set Analysis with Alternate States
	Using Alternate States as identifiers
	Comparing fields between states

	Calculating vertically
	Using inter-record and range functions
	Applying the Total qualifier
	Creating advanced aggregations with Aggr
	Using Aggr to calculate a control chart
	Calculated dimensions
	No to nodistinct

	Summary

	Chapter 6: Advanced Scripting
	Reviewing the basic concepts
	Using Table Files Wizard
	Using relative paths
	Delimited files
	Fixed width files
	XML files
	HTML files
	QVD/QVX files

	Connecting to databases
	Using the Connect button
	Understanding the Connect To statement
	Explaining the Force 32 Bit option
	The Select wizard

	Counting records
	RecNo
	RowNo
	FieldValueCount
	NoOfRows
	NoOfColumns

	Loading data quickly
	Understanding compression settings
	Optimal loading from QVD
	Using an Exists clause
	Preloading fields into QVDs

	Applying variables and the Dollar-sign expansion in the script
	Examining common usage
	Holding dates
	Holding paths

	Examining variable values during reloads
	Nesting Dollar-sign expansions
	Passing parameters to variables – macro functions
	Subroutines

	Using control structures
	Branching with conditional statements
	If … Then … ElseIf
	A note about conditional functions
	Switch … Case
	When and Unless

	Looping in the script
	AutoGenerate
	For … Next loops
	For Each … Next loops
	Do … Loop

	Exiting
	Exiting the script
	Exiting other constructs

	Using variables for error handling
	ErrorMode

	ScriptError
	ScriptErrorCount and ScriptErrorList

	Examining advanced Table File Wizard options
	Enabling a transformation step
	Garbage
	Fill
	Column
	Context
	Unwrap
	Rotate

	Using the Crosstable wizard

	Looking at data from different directions
	Putting things first
	First
	FirstSortedValue

	Looking backwards
	Previous
	Peek

	Reusing code
	Summary

	Chapter 7: Visualizing Data
	Reviewing the history of data visualization
	Beginning the story
	Analyzing geometry
	Grecian influences
	French discord

	Telling stories with diagrams
	Educating with charts
	Inventing new charts
	Creating infographics
	Using data visualization to persuade

	Bringing the story up to date
	Following the leaders

	Understanding the audience
	Matching patterns
	Counting numbers
	Estimating numbers
	Understanding picture superiority
	Drawing conclusions

	Designing effective visualizations
	Understanding affordances
	Grading your screen's real estate
	Nielsen's F
	The Gutenberg diagram
	Preference for the right

	Positioning screen elements
	Charts on the left
	Listboxes on the right
	Dates on top
	Using the layout grid

	Thinking quantitatively
	Understanding the SFW question

	Designing dashboards
	Choosing charts
	Categorical comparison
	Trend analysis
	Comparing measures
	Low cardinality, part-to-whole comparison
	Tabular information

	Using color
	Color should have meaning
	What does RAG mean?
	The ink-to-data ratio
	Color blindness

	Using maps

	Summary

	Index

