
AGGR
Explaining the AGGR function

QlikView Technical Brief

March 2013

QlikView Technical Brief | 2

Contents

INTRODUCTION 3

AGGR 4

AGGR EXPRESSIONS 5

AGGR & SUM(IF…) 7

AGGR & RANK() 8

AGGR IN A DIMENSION 10

SUM OF ROWS 101

CONCLUSION 13

QlikView Technical Brief | 3

Introduction

QlikTech is a leader in Business Discovery — user-driven Business Intelligence (BI). Our
QlikView Business Discovery platform is what’s next in business software. Today’s business
leaders want to enable users at all levels of the organization to leverage data to drive
innovative decisions that push the business forward. QlikView puts those business users in
control of exploring and exploiting their data without limits by delivering these capabilities:

Insight Everywhere — Business Discovery is a whole new way of doing things that puts the
business user in control. Unlike traditional BI, where just a few people are involved in insight
creation, Business Discovery enables everyone to create insight.

QlikView Technical Brief | 4

AGGR Defined

AGGR is a very powerful aggregation function that is sometimes overlooked in the user
interface due to is not being properly understood or indeed a developer not being sure how it
can be utilised. Often, a QlikView developer will revert to more complex scripting or pre-
aggregating data to service an expression that is required in a chart, which can actually be
solved by using AGGR.

You will see in the examples later in this document that AGGR can be used in both
Expressions and Dimensions.

If we were to provide a short description of AGGR it would be -
When it is used, the AGGR statement produces a virtual table, with one expression
and grouped by one or more dimensions. The contents / result of this virtual table can
then be used / aggregated by a further outer aggregation function(s).

The QlikView help provides the following definition of AGGR (Advanced Aggregation):

Advanced Aggregation

There is a special function for advanced aggregations:
aggr ([distinct | nodistinct] [{set_expression}]expression {, dimension})

Returns a set of values of expression calculated over dimensions. The result can be compared to the
expression column of a 'local chart', evaluated in the context where the aggr function resides. Each
dimension must be a single field. It cannot be an expression (calculated dimension).

If the expression argument is preceded by the nodistinct qualifier, each combination of dimension
values may generate more than one return value, depending on underlying data structure. If the
expression argument is preceded by the distinct qualifier or if no qualifier is used at all, each
combination of dimension values will generate only one return value.

By default, the aggregation function will aggregate over the set of possible records defined by the
selection. An alternative set of records can be defined by a Set Analysis expression.

By using this function in Add calculated dimension... it is possible to achieve nested chart aggregation
in multiple levels. See also Nested Aggregations and Related Issues.

When used in chart expressions it is possible to achieve Sum of Rows in Pivot Tables.
Examples:
aggr(sum(Sales), Country)
aggr(nodistinct sum(Sales), Country)
aggr(sum(Sales), Country, Region)
count(aggr(sum(Sales), Country))

QlikView Technical Brief | 5

AGGR Expressions

This first example will show you how to use a simple AGGR statement in a chart expression.

In this scorecard example, we want to be able to display our overall metrics at the country
level, but also show two other more complex expressions.

 Largest average order value (by salesperson) for the specific dimension (in this case
largest order value within each Country)

 Salesperson responsible for that largest order value

We can easily calculate the Average Order Value for each country using a standard QlikView
expression (sum(Sales)/count(Order)). However, we need to retrieve the LARGEST
average order value for each country in the Dimension field. We therefore have to use AGGR
to enable us to pre-calculate / or indeed use some nested aggregation.

So, firstly we will have to calculate the simple average order value….

sum(Sales)/ count(Order)

Next we need to try to find the Average order values for the individual salespeople within
each country. To do this we will need to perform some nested aggregation / pre-calculation.
Essentially we need to tell QlikView that we want to grab the Average order value for all of
the salespeople within each country then display the largest of those.

To get the Average Order Value for the salespeople within each country we will have to put
those dimensions within our AGGR statement….

Aggr(sum(Sales)/ count(Order), Country, Salesperson)

Using the expression above, if you imagine that QlikView is producing a table internally that
gives you……

QlikView Technical Brief | 6

Now QlikView has calculated the individual Average order values for each Salesperson in
each Country, we now want to grab the largest of those. We do this by adding the MAX to the
front of the expression.

MAX(Aggr(sum(Sales)/ count(Order),Country, Salesperson))

This expression will now let us remove the Salesperson dimension from our table and show
the largest Avg Ord Val for all our salespeople at just the country level….

We have now added the first of our two complex expressions. The next requirement is to
have the name of the salesperson responsible for these large Avg Ord Val displayed next to
the values themselves.

To enable us to place the name of the salesperson, we will again need to utliise the AGGR
function but also in conjunction with the FIRSTSORTEDVALUE() function.

We will be using the same average order value calculation as before…

aggr(sum(Sales)/count(Order),Country,Salesperson)

Now, we need to tell QlikView that we want to grab the Salesperson for each of the largest
Order Values. The FIRSTSORTEDVALUE function will let us do this.

The FIRSTSORTEDVALUE function tells QlikView to provide us with the Salesperson, for
the specific Dimension or expressions specified in the second portion of the function.
There is one small, very important, part of the expression. There is a minus symbol before
the AGGR statement/expression. Within a FIRSTSORTEDVALUE function, you can specify
the sort order of the array of data. In this case, the minus symbol tells QlikView to sort
Descending (Largest to Smallest).

FirstSortedValue(Salesperson,-aggr(sum(Sales)/count(Order),Country,Salesperson))

QlikView Technical Brief | 7

AGGR & SUM(IF…)

We can take the use of AGGR in expressions a little further. We will stick to using the same
Average Order Value Calculation for this first example.

Imagine I need to understand how many, if any, of our Salespeople have average order
values of less than $100. I also want to show this in a text object.

Ok, so again, we need to first calculate the individual Average Order Values for each
Salesperson in each Country. As per the previous section of this document you will use the
AGGR statement with Country and Salesperson as the Dimensions to calculate over….

aggr(sum(Sales)/Count(Order),Country,Salesperson)

Now we have our familiar AGGR statement we can add a simple SUM and IF statement to
enable us to count the number of Salespeople by Country, that have an average order value
of less than $100. If you take a look at the table below, the IF statement will place a 1 next to
every underperforming Salesperson (<100) and then adding a SUM to the expression will tell
QlikView to sum the 1’s up and enable us to display this number in a text object as you can
see below.

=sum(if(aggr(sum(Sales)/Count(Order),Country, Salesperson)<100,1,0))

Example….

QlikView Technical Brief | 8

AGGR & Rank()

AGGR can also be utilised with the rank function. Imagine you have a large amount of
customers and you want to understand the top 3 sales rep’s within a text object as you can
see below.

To achieve this we can use the Concat() and Rank() functions in conjunction with our AGGR
statement. The completed expression is below.

=concat(distinct IF(aggr(rank(sum(Sales)),Salesperson)<=3,Salesperson&CHR(13)))

We will now show how the expression is constructed.

First we need to calculate our Sales:

Sum(Sales)

As a text object has no concept of dimensionality i.e. no dimensions to aggregate the
expression over, we need to provide the expression with the dimension that we want to
calculate at. As we have stated already, we want to show the top 3 Salespeople. Therefore,
the AGGR statement must be used to tell QlikView we are calculating Sales at a salesperson
level.

If you remember our original definition of AGGR, using the statement will create a virtual table,
in this case it would look like the one below.

aggr(sum(Sales),Salesperson)

We then need to rank these Sales. The AGGR statement will get us our sales grouped by
Salesperson, we can then add in a Rank() function to get the AGGR statement to return the
Salespeople by Rank.

aggr(Rank(sum(Sales)),Salesperson)

QlikView Technical Brief | 9

The next step is to add in our IF statement to request that we only receive the top 3 people in
the result. So, if the rank in our virtual AGGR table is <=3 then show the salesperson else
null().

IF(aggr(rank(sum(Sales)),Salesperson)<=3,Salesperson)

Finally, we want to present the results of this together in a text object, not in a table/chart. We
will need to therefore use the CONCAT() function to string the 3 Salespeople values together.
There is also a clever trick to add a carriage return in to the CONCAT to place the values on
their own rows in the Text Object. At the end of the statement you will see a CHR(13).

=concat(distinct IF(aggr(rank(sum(Sales)),Salesperson)<=3,Salesperson&CHR(13)))

QlikView Technical Brief | 10

AGGR in a Dimension

The AGGR statement can also be utliised in a calculated dimension. In this example we want
to create a dimension that is based on an aggregation.

This is a good example from the pharmaceutical industry. Sales reps visit physicians
regularly to showcase and sell their new products. In this case, the company wanted to
analyse the Sales by physicians, for those customers visited once, visited twice, etc.

To enable us to use AGGR in our dimension, we need to create a “Calculated Dimension” in
our chart.

A dimension in any chart, needs to be a set/array/series of values to plot our expression over.
And in this case, we want to plot the number of times Physician Visits have occurred. As we
have mentioned earlier in this document, a QlikView developer would often perform some
pre-aggregating of data in the script to achieve this.

Using the AGGR statement in our dimension lets us aggregate (count in this case) the total
Visits (VisitID) by each Physician (PhysicianID) and then plot the result of this on the axis of
the bar chart. If we didn’t utilise AGGR the chart would return an error like below.

Using the AGGR statement below, we can provide the bar chart with our series of values to
plot our sales (Sum(Sales)) expression over.

Aggr(Count(VisitID),PhysicianID)

Our final chart…

QlikView Technical Brief | 10

AGGR in a Dimension

The AGGR statement can also be utliised in a calculated dimension. In this example we want
to create a dimension that is based on an aggregation.

This is a good example from the pharmaceutical industry. Sales reps visit physicians
regularly to showcase and sell their new products. In this case, the company wanted to
analyse the Sales by physicians, for those customers visited once, visited twice, etc.

To enable us to use AGGR in our dimension, we need to create a “Calculated Dimension” in
our chart.

A dimension in any chart, needs to be a set/array/series of values to plot our expression over.
And in this case, we want to plot the number of times Physician Visits have occurred. As we
have mentioned earlier in this document, a QlikView developer would often perform some
pre-aggregating of data in the script to achieve this.

Using the AGGR statement in our dimension lets us aggregate (count in this case) the total
Visits (VisitID) by each Physician (PhysicianID) and then plot the result of this on the axis of
the bar chart. If we didn’t utilise AGGR the chart would return an error like below.

Using the AGGR statement below, we can provide the bar chart with our series of values to
plot our sales (Sum(Sales)) expression over.

Aggr(Count(VisitID),PhysicianID)

Our final chart…

QlikView Technical Brief | 10

AGGR in a Dimension

The AGGR statement can also be utliised in a calculated dimension. In this example we want
to create a dimension that is based on an aggregation.

This is a good example from the pharmaceutical industry. Sales reps visit physicians
regularly to showcase and sell their new products. In this case, the company wanted to
analyse the Sales by physicians, for those customers visited once, visited twice, etc.

To enable us to use AGGR in our dimension, we need to create a “Calculated Dimension” in
our chart.

A dimension in any chart, needs to be a set/array/series of values to plot our expression over.
And in this case, we want to plot the number of times Physician Visits have occurred. As we
have mentioned earlier in this document, a QlikView developer would often perform some
pre-aggregating of data in the script to achieve this.

Using the AGGR statement in our dimension lets us aggregate (count in this case) the total
Visits (VisitID) by each Physician (PhysicianID) and then plot the result of this on the axis of
the bar chart. If we didn’t utilise AGGR the chart would return an error like below.

Using the AGGR statement below, we can provide the bar chart with our series of values to
plot our sales (Sum(Sales)) expression over.

Aggr(Count(VisitID),PhysicianID)

Our final chart…

QlikView Technical Brief | 11

Sum of Rows in a Pivot Table

When using QlikView straight tables, we are able to define the total mode for any of our
expressions.

This total mode option is not available when working with Pivot Tables. However, it can be
achieved using the aggr() function. It is especially valuable in a pivoted PivotTable
(CrossTable) with more than one dimension.

In this example we have three displays/iterations of the same data. In the first straight table
you can see a dimension and three expressions. The expressions are Plan, Actual, and Acc.
Difference (the absolute difference between the Plan and Actual columns). In the total row,
we want to have a sum of rows occurring.

Our initial Acc. Difference Expression look like this:

fabs(sum(Planned-Actual))

You can see in the image below. Using a Straight table, the Acc. Difference column presents
68. The correct sum of the rows.

However, if we wanted to display this data in a pivot table (as per the image below), the
option to define the Total mode is not available to us. And the default display for the total row
would be the “Expression Total”, in this case, showing 36.

Using the aggr() function, it is possible to nest the inner basic aggregation with an outer
aggregation, thus creating a nested aggregation that will be similar to the Sum of Rows
option available in the StraightTable. In this specific example we have added the AGGR
statement and provided the dimension of Region that is present in our table.

aggr(fabs(sum(Planned-Actual)),Region)

QlikView Technical Brief | 12

We then add the SUM() function to tell QlikView to sum the rows within.

sum(aggr(fabs(sum(Planned-Actual)),Region))

QlikView Technical Brief | 13

Conclusion

As you can see, AGGR is a very powerful function that can be utilised to create a more
complex expressions and negate the need for “extra” scripting or pre-aggregating in the script.
We have shown you a number of common scenarios where AGGR can help you solve a
problem or indeed provide you with better analysis.

