
Q L I K . C O M

W H I T E P A P E R

Incremental Load
Patterns for Non-
Replicate Data Sources

Best Practices for Compose for Data Warehouses

Incremental Load Patterns for Non-Replicate Data Sources 1

TABLE OF CONTENTS

Qlik Compose ETL Tasks 3

Incremental Load Patterns 4

Implementing the Process Flag Pattern 5

Implementing the Incrementing Filter Pattern 9

Applying Incremental Design Patterns to View or Query Based Mappings 14

Conclusion 16

Incremental Load Patterns for Non-Replicate Data Sources 2

S U M M A R Y

• Qlik Data Integration provides an integrated data warehouse automation solution architected to

incrementally load data based on changes captured in the source system.

• In certain scenarios the automated, code-less incremental load process cannot be leveraged

• Qlik Compose provides functionality to support multiple incremental load patterns for non-Replicate

delivered data

I N T R O D U C T I O N

Enterprise sources of data are evolving and becoming more varied.

Traditional data sources such as relational database management

systems (RDBMS) and files still provide the bulk of operational data, but

enterprise analytics now require loading and transformation of a variety

of data types from semi-structured (e.g. JSON files) to data sets shared

via new cloud data warehouse sharing features.

Qlik’s Data Integration platform provides functionality to support near

real-time data delivery from traditional sources, files, and some SaaS

environments via Qlik Replicate. Qlik Compose for Data Warehouses is

integrated with Qlik Replicate to automate the incremental load process

of the data warehouse based on change data capture (CDC) from the

source system. However, there are certain scenarios where the

automated incremental load processes cannot be leveraged. In those

instances there are extract transform and load (ETL) patterns that can be

implemented in Qlik Compose to support incremental data loads. This

paper will describe these scenarios and show how to implement custom

Incremental Load Patterns for Non-Replicate Data Sources 3

incremental load patterns in Qlik Compose and how those patterns can

be applied to query or view based mappings.

Qlik Compose ETL Tasks

Qlik Compose provides two types of ETL tasks that support different use cases / processing

requirements. These are known as full load tasks and CDC tasks. ETL Tasks are a collection of

mappings that run together. The task type defines data source and processing characteristics within

Compose and impacts how Compose automates the Extract, Load and Transform (ELT) code. A

comparison of the two task types is defined in the table below.

 Full Load Task CDC Task

What It Does Processes a full data set, comparing it to the data
warehouse. The task detects new and changed records,
processing them based on the model’s characteristics
(type 1 and type 2 attributes)

Leverages Replicates STORE CHANGES option and uses
the change tracking (__CT) tables to only process new
changes instead of the full data set. This task still
compares the changed records to the data warehouse to
ensure the change is applicable to the data warehouse
model.

When To
Use It

• Initial load of the data warehouse

• End of day or batch based processes that require
processing a complete dataset

• Mappings using query or views as a source

• Custom Incremental load processes

• CDC based processing for Replicate data sources

• Intra-day / near real-time data loads

• Batch data loads driven from CDC delivered data

Limitations • Out of the box workload processes the complete table /
view / query result set

• Not applicable for mappings using a query or view as the
source

Data Source • Table (full load for Replicate delivered data)

• Queries

• Views

• Change Tracking tables (Compose appends __CT to the
mappings defined source

Qlik Compose provides native support for incremental loading of data ingested to the data warehouse

by Qlik Replicate using change data capture. This integration leverages Replicates “store changes”

setting and change tracking (_ct tables) features. Whenever possible, you should strive to use

Replicate STORE CHANGES settings and Compose CDC ETL tasks to process data incrementally to

reduce custom code requirements and leverage automation. However, there are scenarios that

prevent the use of the Compose CDC ETL tasks.

Scenarios where CDC ETL Tasks are not applicable

Qlik Compose can automate the data warehouse processing of other sources of data that are

accessible from within the data warehouse. These could be tables or views within the data warehouse

Incremental Load Patterns for Non-Replicate Data Sources 4

environment, data shared using features like Snowflakes data sharing or even There are a few

scenarios where the Compose CDC ETL task is not applicable these include –

• Data sourced by a non-Replicate technology. For example:

o Data shared using cloud data warehouse features like Snowflake’s data sharing

o External tables pointing to data structures in an object store, such as S3, Azure Data
Lake Storage Gen2 or Google Cloud Storage.

o Data ingested to the warehouse by a technology other than Qlik Replicate

• Replicate sources that

o Only allow Full Loads

o Do not support full supplemental logging or full before-image and after-image are not in
the log.

An example of a data source that has restrictions due to the data managed in the transaction log is

SAP HANA. Qlik Replicate provides two methods to capture changes from SAP Hana – trigger based

(which has no restrictions for Compose processing) and log based capture. For log-based capture,

SAP HANA does not provide primary key information in the transaction log to be captured by Qlik

Replicate. As such, Qlik Replicate cannot provide the necessary change tracking table data to

support out of the box CDC ETL tasks in Qlik Compose

Qlik Compose Full load tasks could be leveraged for batch based workloads to detect new and

changed records between the source data and the data warehouse however, this requires a full data

comparison which can be computationally expensive or not support an incremental processing SLA.

When these scenarios occur, ETL patterns can be implemented in Qlik Compose to support

incremental data loading. Specific data warehouse platforms may have features that can be

supported with query-based mappings (for example Snowflake table streams). These environment

specific features are not considered in this white paper. Instead, this provides general patterns for

incremental data loading.

Incremental Load Patterns

While there are many methods to create incremental loads, there are two common incremental load

patterns that can be implemented in Qlik Compose. These are ETL patterns that have stood the test of

time and are common to those familiar with creating ETL processes to incrementally read source data

and deliver to the target. The patterns are:

• Process Flag Pattern

Incremental Load Patterns for Non-Replicate Data Sources 5

• Incrementing Filter Pattern

 Process Flag Incrementing Filter Pattern

Pattern Overview Leverage an additional column in the source data to
signify the set of data that is ready to process

Leverage an existing column in the source data like
a timestamp to filter out new records

When To Use It • Applicable to any data source that can be
updated by Compose

• Source data is incrementally appended or
updated

• Do not want to delete or archive landing data

• Do not have a naturally occurring incrementing
column in the source data

• Merging tables from multiple sources in Replicate

• Applicable to any data source with a naturally
occurring incrementing column (e.g. timestamp)

• Source data is incrementally appended or
updated

• External tables pointing to data in data lake that
you cannot update/delete

• Table in DW

• Do not want to delete or archive landing data

Benefits • Simple to implement

• Supports any data source in the data warehouse
that can be updated

• Source data can be incrementally updated while
processing

• Simple to implement

• Consume source data as is in an incremental
fashion

• Query based process – no additional “updates” to
source data

Considerations • Need to add attribute to the landing table

• Custom code required to manage the processing
flag

• Source data requires “updating” to flag processing
characteristic

• Additional overhead in managing process_flag
attribute across multiple tables

• When data sourced by Replicate leverage
MERGE features to ensure consistency of
incrementing column

• Column with incrementing value must be
available in the source

These two patterns can be used with any data ingested to the data warehouse to provide incremental

processing (including Qlik Replicate ingested data).

Implementing the Process Flag Pattern

Leveraging a “process flag” is a common development pattern when ETL needs to process new or

changed data. The pattern is applicable to any incremental design process, but specifically applies

when the source data does not provide an incrementing column (like a last_update_dtm or sequence

number) and it is continuously being altered by the data ingest process. The Process Flag pattern

requires adding a column to the landing table (source table for a Qlik Compose mapping). This column

Incremental Load Patterns for Non-Replicate Data Sources 6

is used to filter new or changed records and track the status of records through the ETL process, from

new (N) to processing (P) to completed (Y).

In this example, we will walk through configuring Qlik Replicate and Qlik Compose to use a pattern flag,

however this same pattern can be implemented with data sources ingested by other means. This

pattern would be applicable for Replicate sources that do not provide enough data in the log for a

complete CT record, for example log-based HANA capture.

Landing Area Configuration

Data sources ingested to the data warehouse platform outside of Qlik Replicate should add the

process_flag column and new data ingested should set the column value to ‘N’ to signify a new record /

change that must be processed. Data ingested by Qlik Replicate can leverage a Global Transformation

Rule to configure this new column and its value. (A global rule allows the logic to be applied to all or a

subset of tables in the Qlik Replicate task). To configure a rule in Qlik Replicate:

• In the Qlik Replicate Task Designer click Global Rules*

• Click New Rule then Transformation

• Select Add Column

• Apply any table / scope filters as required

• Configure the Transformation Action for the column name, data type and expression (see

below image)

• Complete the Global Rule wizard and run the Qlik Replicate task

Qlik Replicate will automatically create the target tables with the process_flag column. Any activity

performed against the target table by Qlik Replicate will set the process_flag value to ‘N’. Qlik

Compose will use this value to know which records it should process.

Incremental Load Patterns for Non-Replicate Data Sources 7

Qlik Compose Configuration

Qlik Compose should be configured to only process data that has been marked ‘N’ by the ingest

process. Since new records / changes could be fed to the landing area during the ETL process, you

must ensure you capture a static set of records to process, and subsequently mark these records as

processed when the ETL is completed. This can be done by configuring 3 components in Qlik

Compose:

• A Pre-Loading ETL step to mark records as ready to process

• A Mapping filter to only process marked records

• A Post-Loading ETL step to mark the processed records as completed

These components are applied to a single Qlik Compose ETL task to automate the processing

requirements.

Pre Loading ETL Step

A Pre Loading ETL step can be configured to update the source tables and set the process_flag

column to ‘P’ to signify the record is ready to be processed. To configure this in Qlik Compose:

• Click Manage under the Data Warehouse section

• Click Pre Loading ETL and New Pre Loading ETL…

• Enter a name for the ETL step and enter the update

statement required

Incremental Load Patterns for Non-Replicate Data Sources 8

•

• Note you could also have Qlik Compose execute a stored procedure you have written in your

data warehouse environment to update the process_flag

Mapping Filter

A filter should be created in the mapping to ensure Compose only processes new or changed records.

A typical implementation would filter on process_flag = ‘P’ to only select the records marked by the Pre-

Loading ETL step. However, if you have records that are constantly updated in the source

environment, implementing a filter process_flag IN (‘N’,’P’) ensures that Compose picks up records

marked either P or N and reduces any latency of those records that are updated continuously. To

implement the filter in a mapping simply open the mapping in Compose and click on the Filter button

and enter the required filter.

Incremental Load Patterns for Non-Replicate Data Sources 9

Post Loading ETL

The Post Loading ETL step should be defined to update the landing table and signify that the records

marked for processing have been processed. Marking the records in the first step ensures that only

those records that were static since the start of the process will be marked as completed (any new /

changed records would have the process_flag set to ‘N’ by the ingestion process). To create the Post

Load step –

• Click Manage under the Data Warehouse section

• Click Post Loading ETL and New Pre Loading ETL…

• Enter a name for the ETL step and enter the update statement required

•

• Note you could also have Qlik Compose execute a stored procedure you have written in your

data warehouse environment to update the process_flag.

Ensure all the required Pre Loading ETL, Mappings, Post Loading steps are tagged to the appropriate

full load ETL Task in Qlik Compose and generate the code. Compose will execute pre-load, mappings

and automated ETL to load the data vault structures and complete the process by marking records as

processed.

Considerations

Leveraging a “process_flag” pattern is common practice for ETL developers. One item to consider is

that this incremental design pattern requires additional updates to the source table to ensure Compose

processes specific records and marks those records as being processed. While these statements are

very lightweight, it does incur some additional processing.

Implementing the Incrementing Filter Pattern

Many data sources provide a data ingestion timestamp, or the staging / landing tables provide an

incrementing column which can be used to know when new or changed records have been applied to

the landing area for Compose to process. The incrementing filter pattern leverages an incrementing (or

decrementing) column to know which records are new or have been changed since the last Compose

Incremental Load Patterns for Non-Replicate Data Sources 10

execution. This pattern requires managing the last processed value in order to ensure Compose

processes only new or changed data for each execution. This can be maintained in the Compose data

model (for simplicity) or it could be managed in a separate control table that would be updated and

managed with Pre and Post load features for the ETL set.

In this example, we will walk through configuring Qlik Replicate and Qlik Compose to use an

incrementing column to filter new and change records, however this same pattern can be implemented

with data sources ingested by other means. This pattern would be applicable for Replicate sources that

do not provide enough data in the log for a complete CT record, for example log-based HANA capture.

Landing Area Configuration

Data sources ingested to the data warehouse platform outside of Qlik Replicate should have a column

with incrementing values that are updated anytime a new or changed record is applied. Data ingested

by Qlik Replicate can leverage a Global Transformation Rule to configure this new column and its

value. (A global rule allows the logic to be applied to all or a subset of tables in the Qlik Replicate task).

Qlik Replicate provides internal variables that can be used to manage the incrementing columns. One

option would be to use the $AR_H_COMMIT_TIMESTAMP which is the source commit timestamp. Another

is to use the $AR_H_CHANGE_SEQ which is an always increasing value managed by Qlik Replicate based

on the Replicate server UTC time. While either of these options will work, in this example we will utilize

the $AR_H_CHANGE_SEQ value. To configure a rule in Qlik Replicate:

• In the Qlik Replicate Task Designer click Global Rules*

• Click New Rule then Transformation

• Select Add Column

• Apply any table / scope filters as required

• Configure the Transformation Action for the column name, data type and expression (see

below image)

Incremental Load Patterns for Non-Replicate Data Sources 11

• Complete the Global Rule wizard and run the Qlik Replicate task

In this example, Qlik Replicate will automatically create the target tables with the ChangeSeq column.

Any activity performed against the target table by Qlik Replicate will update the ChangeSeq column to a

new value. Qlik Compose will use this value to know which records it should process.

Qlik Compose Configuration

Qlik Compose should be configured to only process data that has a higher ChangeSeq value than the

last processed value. While there are different methods to manage the processed ChangeSeq value, a

recommended approach is to add the ChangeSeq attribute to every entity in the Compose model as a

Type 1 attribute. The ETL mappings can then filter source data where the ChangeSeq is newer than

the highest value managed in the Compose HUB tables. This leverages the most automation within

Qlik Compose and allows the value to be managed on an entity by entity basis within the Compose

model. To implement this pattern in Qlik Compose –

• For each entity in the Compose Model click New Attribute

• Define an attribute as per the below image

Incremental Load Patterns for Non-Replicate Data Sources 12

•

• Compose will place the ChangeSeq attribute in the logical entities HUB table

• Edit the Compose mappings that utilize this incremental load pattern and apply a filter as per
the below image (replacing the NVL function with the null replace function for your data
warehouse, and setting the appropriate schema / table name)

•

• Compose will filter source records based on the ChangeSeq and update the ChangeSeq value
in the HUB as part of its ETL processing

Extending the Configuration to Process Multiple Sources

The above scenario provides the template for supporting incremental changes when a single mapping

(and thus single source) is loading a Compose entity. In a Compose data warehouse implementation it

is common to have multiple sources loading an entity. How these sources are related will impact how

the ChangeSeq value is managed in Compose. Two common scenarios are UNIONing or JOINing

source data. If the data is provided by the same Qlik Replicate task (e.g. 2 tables from the same

Incremental Load Patterns for Non-Replicate Data Sources 13

source), then the above pattern will suffice as the ChangeSeq is guaranteed to be managed within a

single Replicate task. However if data is delivered by different ingestion technologies or different

Replicate tasks then the ChangeSeq needs to be managed with a Source granularity.

There are 2 methods to handle this. Assuming a UNION use case, then it is common to include a

SourceSystem column in the data model so you have some source lineage for each record. In this

scenario each mapping (UNION’s are implemented by leveraging multiple mappings in the same ETL

set in Compose) simply filters based on its SourceSystem value.

The below model shows an entity with a composite key for CustomerID and SourceSystem.

The below image depicts the filter to be applied in the Compose mapping. Note the additional filter for

SourceSystem.

In a scenario where multiple source systems (and possibly partial mappings) are used to populate a

single logical entity in Compose with JOIN conditions (or partial mappings), it is recommended to

manage each sources ChangeSeq (or equivalent column) independently (see below image).

Incremental Load Patterns for Non-Replicate Data Sources 14

Assuming the mapping uses a query or view based source to define the joins between the two

disparate sources, the filter should then take into account both ChangeSeq columns to detect new or

changed records.

Any combination of ChangeSeq (or equivalent) columns can be stored / maintained in the data

warehouse logical entity and used in the filter.

Considerations

This simple pattern does not require additional updates to the source data set (reducing additional

processing requirements) and relies on Compose to manage the processed values. If this pattern is

implemented in a cloud data warehouse environment (for example Snowflake or BigQuery) with Qlik

Replicate as the ingestion method, it is recommended to leverage MERGE configuration in Qlik

Replicate to ensure the micro-batch ingestion is performed in a single statement. (This ensures the

ChangeSeq values are not incrementally adjusted out of order). Managing the last processed values in

the data warehouse enables automation without additional hand-written code and ensures any

combination of ETL mappings into ETL tasks will get the appropriate “current” value. Note however

that this could also be implemented using a single control table which would be updated via a Compose

Pre-Load and Post-Load task. This methodology is documented in a separate whitepaper (available

on community.qlik.com) Layering the Qlik Data Integration Architecture with Compose Projects.

Applying Incremental Design Patterns to View or Query Based
Mappings

The patterns described above are applicable for non-Replicate data sources, but they can also be

leveraged to incrementally process data for mappings using a query or a view for the source. As

described previously, CDC ETL Tasks do not support mappings with a query or view as the source for

the mapping. Since a view and query can have any number of complex operations it is not possible for

Incremental Load Patterns for Non-Replicate Data Sources 15

Compose to automatically know the subset of records changed since the last ETL task execution.

Leveraging the patterns described allow the Full Load Task to only process new or changed data and

support incremental loading. The below model represents the source of data that is loaded to the

data warehouse landing area by a non-Replicate ingestion process. The requirement for the Compose

model is to join Product, ProductSubCategory and ProductCategory to represent a denormalized entity

“ProductMaster”. The incremental data load must consider changes to any source table.

Product

ProductId
ProductName
ProductSubCategoryID
...
AttributeN

ProductSubCategory

ProductSubCategoryID
ProductCategoryID
Name

ProductCategory

ProductCategoryID
Name

Process Flag Pattern

The Landing area design and pre-ETL process steps remain the same when implementing a query or

view based mapping. Each source table will have a “Process_Flag” column appended and set to “N”

to any new or changed rows. The Pre-ETL process will update that column to “P” when ready to

process the data. The query / view requires implementing the FILTER on Process_Flag with OR

conditions. See query below joining 3 product tables to produce a denormalized product data set.

The above query ensures that changes to any table are considered as part of the load to staging

process.

Incremental Load Patterns for Non-Replicate Data Sources 16

Incremental Filter Pattern

Implementing an incremental filter pattern for query or view based mappings follows the same principle

as the process flag. Filters with OR conditions can be used to determine which records have

changed. The additional step is to determine the max ChangeSeq for each record to apply to the

Compose model. The below query leverage OR conditions in the WHERE clause to ensure changes

to any table are considered. The CASE statement ensures that the current “max” ChangeSeq value

across the tables is written into the Product HUB.

These incremental design patterns can be used for any source of data (even if using Replicate with

APPLY CHANGES) when the mapping source needs to be a view or a query.

Conclusion

Qlik’s data integration platform provides solutions for automating the data warehouse lifecycle. While

the combination of Qlik Replicate and Qlik Compose provides powerful features to support change data

capture based incremental data loading of the data warehouse and subsequent data marts, there are

conditions where the process cannot be 100% automated. In those scenarios, Qlik Compose provides

the necessary features to implement incremental design patterns regardless of the data ingestion

methodology or any restrictions that may arise from specific Qlik Replicate sources.

Incremental Load Patterns for Non-Replicate Data Sources 17

© 2020 QlikTech International AB. All rights reserved. All company and/or product names may be trade names, trademarks and/or registered trademarks of the respective owners with which
they are associated.

About Qlik

Qlik’s vision is a data-literate world, one where everyone can use data to improve decision-
making and solve their most challenging problems. Only Qlik offers end-to-end, real-time data
integration and analytics solutions that help organizations access and transform all their data
into value. Qlik helps companies lead with data to see more deeply into customer behavior,
reinvent business processes, discover new revenue streams, and balance risk and reward.
Qlik does business in more than 100 countries and serves over 50,000 customers around the
world.

qlik.com

