Skip to main content
Announcements
Global Transformation Awards submissions are open! SUBMIT YOUR STORY
cancel
Showing results for 
Search instead for 
Did you mean: 
fks
Contributor III
Contributor III

Data Modelling: Add SubTotal in load script to generate key between tables

I have the following two tables I need to link together (sample data is provided in attatched xls-file):

2019-07-02 15_51_57-Qlik Sense Desktop Tables.png

Every row in the Transaction table where Source = FPER corresponds to two or more rows in the Sales Details table, ie:

2019-07-02 16_18_22-Qlik Sense Desktop Correlation.pngThe problem is finding/defining a unique key to match the two tables together.

The fields Region, Store, Item & Source are all ok, but the Date field sometimes differs a few days between the tables.

Therefore I would like to add a SubTotal field to the Sales Details table, making it look like this:

2019-07-02 18_31_40-Qlik Sense Desktop SubTotal.pngHaving a SubTotal would allow to construct a unique composite key, giving the desired result:

 2019-07-02 18_28_48-Qlik Sense Desktop Key.png

So the question is for a clever way to add this SubTotal field to the load script.. 

Many thanks!

Labels (2)
1 Solution

Accepted Solutions
Lisa_P
Employee
Employee

In that case, use the code above for Transactions table key and for the second table ..

[Sales_Details]:
Load * Inline [
Sales_Date, Sales_Region, Sales_Store, Sales_Item, Sales_Customer, Sales_Amount, Sales_Source
2019-05-27, 2321, 56810, 5021, Donald Duck, 3641, FPER
2019-05-27, 2321, 56810, 5021, Mickey Mouse, 1324, FPER
2019-05-27, 2321, 56810, 5521, Mickey Mouse, 222, FPER
2019-05-27, 2321, 56810, 5531, Donald Duck, 5098, FPER
2019-05-27, 2321, 56810, 5531, Mickey Mouse, 764, FPER
2019-04-26, 2321, 56810, 5021, Tony Soprano, 2979, FPER
2019-04-26, 2321, 56810, 5021, Tom Hanks, 2317, FPER
2019-04-26, 2321, 56810, 5521, Tony Soprano, 444, FPER
2019-04-26, 2321, 56810, 5521, Tom Hanks, 196, FPER
2019-04-26, 2321, 56810, 5531, Tony Soprano, 1905, FPER
2019-04-26, 2321, 56810, 5531, Tom Hanks, 764, FPER
2019-03-27, 3610, 47200, 5021, Tony Soprano, 42800, FPER
2019-03-27, 3610, 47200, 5021, Bruce Willis, 39550, FPER
2019-03-27, 3610, 47200, 5021, Donald Duck, 23460, FPER
2019-03-27, 3610, 47200, 5021, Anthony Eden, 22807, FPER
2019-03-27, 3610, 47200, 5021, Lill-Babs Svensson, 19500, FPER
2019-03-27, 3610, 47200, 5122, Anthony Eden, 1623, FPER
2019-03-27, 3610, 47200, 5131, Anthony Eden, -983, FPER
2019-03-27, 3610, 47200, 5121, Anthony Eden, -1623, FPER
];

Left Join(Sales_Details)
Load Sales_Date, Sales_Region, Sales_Store, Sales_Item, sum(Sales_Amount) as KeySales
Resident Sales_Details
Group By Sales_Date, Sales_Region, Sales_Store, Sales_Item;

NewSales_Details:
Load *,
Year(Sales_Date) & '|' & Month(Sales_Date) & '|' & Sales_Region & '|' & Sales_Store & '|' & Sales_Item & '|' & Sales_Source & '|' & KeySales as SalesKey
Resident [Sales_Details];

Drop table Sales_Details;

View solution in original post

4 Replies
Lisa_P
Employee
Employee

The Key is easy for the first table, just add a preceding load on top of your Transaction table load to get the key:
[Transactions]:
Load *,
Year(Date) & '|' & Month(Date) & '|' & Region & '|' & Store & '|' & Item & '|' & Source & '|' & Amount as SalesKey;
Load * Inline [
No, Date, Region, Store, Item, Transaction Type, Source, Amount
600415 2019-05-24, 2321 56810 5021 Sales, FPER, 4965
...

But for the SalesDetails table, I am not sure that in the real world you are going to always get the right answer if you are aggregating based on date/region/store/item/source. What if that sales store sells more than one item the same on the same day, the aggregation will not be correct ???
fks
Contributor III
Contributor III
Author

The key will not be perfect but unfortunatly that's how my data set looks like. The real data is not for sales but to tie salary details to financial records, ie. to provide drill down capability to a P&L statement.

The Details table holds only one record per day for every region/store/item/source entry, so that should be ok. 

If the date fields in both tables would be in sync the key could simply have been date/region/store/item/source.
Problem is that the date field in the Details table may differ one or more days (but always the same year and month) from the corresponding record in the Transaction table. But the SubTotals of the Details table will always sum up to the corresponding records in the Transaction table, hence the desire to use SubTotal to construct a unique key.

 

Lisa_P
Employee
Employee

In that case, use the code above for Transactions table key and for the second table ..

[Sales_Details]:
Load * Inline [
Sales_Date, Sales_Region, Sales_Store, Sales_Item, Sales_Customer, Sales_Amount, Sales_Source
2019-05-27, 2321, 56810, 5021, Donald Duck, 3641, FPER
2019-05-27, 2321, 56810, 5021, Mickey Mouse, 1324, FPER
2019-05-27, 2321, 56810, 5521, Mickey Mouse, 222, FPER
2019-05-27, 2321, 56810, 5531, Donald Duck, 5098, FPER
2019-05-27, 2321, 56810, 5531, Mickey Mouse, 764, FPER
2019-04-26, 2321, 56810, 5021, Tony Soprano, 2979, FPER
2019-04-26, 2321, 56810, 5021, Tom Hanks, 2317, FPER
2019-04-26, 2321, 56810, 5521, Tony Soprano, 444, FPER
2019-04-26, 2321, 56810, 5521, Tom Hanks, 196, FPER
2019-04-26, 2321, 56810, 5531, Tony Soprano, 1905, FPER
2019-04-26, 2321, 56810, 5531, Tom Hanks, 764, FPER
2019-03-27, 3610, 47200, 5021, Tony Soprano, 42800, FPER
2019-03-27, 3610, 47200, 5021, Bruce Willis, 39550, FPER
2019-03-27, 3610, 47200, 5021, Donald Duck, 23460, FPER
2019-03-27, 3610, 47200, 5021, Anthony Eden, 22807, FPER
2019-03-27, 3610, 47200, 5021, Lill-Babs Svensson, 19500, FPER
2019-03-27, 3610, 47200, 5122, Anthony Eden, 1623, FPER
2019-03-27, 3610, 47200, 5131, Anthony Eden, -983, FPER
2019-03-27, 3610, 47200, 5121, Anthony Eden, -1623, FPER
];

Left Join(Sales_Details)
Load Sales_Date, Sales_Region, Sales_Store, Sales_Item, sum(Sales_Amount) as KeySales
Resident Sales_Details
Group By Sales_Date, Sales_Region, Sales_Store, Sales_Item;

NewSales_Details:
Load *,
Year(Sales_Date) & '|' & Month(Sales_Date) & '|' & Sales_Region & '|' & Sales_Store & '|' & Sales_Item & '|' & Sales_Source & '|' & KeySales as SalesKey
Resident [Sales_Details];

Drop table Sales_Details;

fks
Contributor III
Contributor III
Author

Lovely, many thanks!