Do not input private or sensitive data. View Qlik Privacy & Cookie Policy.
Skip to main content

Announcements
Join us in Bucharest on Sept 18th for Qlik's AI Reality Tour! Register Now
cancel
Showing results for 
Search instead for 
Did you mean: 
fashid
Specialist
Specialist

Scenario based fetching of records based on date

Hi Qlik Experts,

I have a scenario with which i need a little help . After several operations on the base data i have created this table which is in the excel file.

From this table i need to fetch those application no's whose computerized tread mill test is issued after the ECG test.

For ECG test i have min_date_1 column and for computerized tread mill test i have min_date_2 column

How do i go about doing this ?

Regards,

Nadeem

1 Solution

Accepted Solutions
jagan
Partner - Champion III
Partner - Champion III

Hi,

Try like this

TEMP:

LOAD APPLICATION_NO_1,

     min_date_1,

     min_date_2,

     REQUIREMENT_DESC_1

FROM

TB12_20160916_204425.csv

(txt, codepage is 1252, embedded labels, delimiter is ',', msq);

Temp1:

LOAD

APPLICATION_NO_1,

Date1,

Date2

WHERE Flag = 1;

LOAD

If(Max(min_date_1) < Min(min_date_2), 1, 0) AS Flag,

APPLICATION_NO_1,

     Date(Max(min_date_1)) AS Date1,

     Date(Min(min_date_2)) AS Date2

RESIDENT TEMP

GROUP BY APPLICATION_NO_1;

View solution in original post

4 Replies
swuehl
MVP
MVP

maybe like

=Aggr(If(Max(min_date_1)<Min(min_date_2), APPLICATION_NO_1),APPLICATION_NO_1) Date(Max(min_date_1)) Date(Min(min_date_2))
17-08-2016 26-07-2015
110000449509024-07-201526-07-2015
110000943080425-09-201529-09-2015
110000954823729-09-201508-10-2015
110000958787803-10-201507-10-2015
110000958804903-10-201517-10-2015
110000959283703-10-201520-10-2015
110001047360714-10-201515-10-2015
110001090065015-10-201512-12-2015
110001132958118-10-201508-11-2015
110001141091420-10-201530-11-2015
110001253277024-10-201525-10-2015
110001754921205-11-201506-11-2015
110001758648513-11-201528-11-2015
110001791358509-11-201509-01-2016
110001923864716-11-201514-12-2015
110002069708023-11-201530-11-2015
110002196428420-11-201521-11-2015
110002272359023-11-201526-12-2015
110002295458023-11-201504-01-2016
110002346908724-11-201525-11-2015
110002389258225-11-201530-12-2015
110002472158028-11-201515-12-2015
110002496508026-11-201511-01-2016
110002496708026-11-201527-11-2015
110002676608029-11-201517-12-2015
110002795008001-12-201502-12-2015
110002795609601-12-201519-01-2016
110002800811601-12-201517-12-2015
110002828861503-12-201502-01-2016
110002828864003-12-201513-12-2015
110002845258108-12-201508-01-2016
110002861608604-12-201520-01-2016
110002917208507-12-201508-12-2015
110002927762907-12-201530-01-2016
110002946289008-12-201509-12-2015
110003008414009-12-201526-12-2015
110003019108009-12-201514-12-2015
110003044658322-12-201509-01-2016
110003053017410-12-201504-01-2016
110003061868710-12-201512-12-2015
110003072408017-12-201530-12-2015
110003154269114-12-201528-12-2015
110003254505326-12-201531-12-2015
110003260826822-12-201524-12-2015
110003311060921-12-201522-12-2015
110003311139521-12-201505-01-2016
110003311231721-12-201512-01-2016
110003312399322-12-201524-12-2015
110003314571622-12-201524-12-2015
110003340222222-12-201524-12-2015
110003399174523-12-201526-12-2015
110003399516323-12-201501-01-2016
110003409338023-12-201504-01-2016
110003417871824-12-201528-12-2015
110003420321605-01-201607-01-2016
110003444573124-12-201529-12-2015
110003582274328-12-201529-12-2015
110003622845429-12-201507-01-2016
110003622879529-12-201511-01-2016
110003623230029-12-201531-12-2015
110003630531730-12-201512-01-2016
110003703933931-12-201505-01-2016
110003885384905-01-201608-01-2016
110003917257607-01-201629-01-2016
110003939024307-01-201606-02-2016
110003940478709-01-201611-01-2016
110003941258010-01-201613-01-2016
110003941483711-01-201619-02-2016
110003941561211-01-201613-01-2016
110003941591411-01-201612-01-2016
110003943545921-01-201608-02-2016
110003943565714-01-201615-01-2016
110003943635614-01-201615-01-2016
110003943653014-01-201615-01-2016
110003945349219-01-201620-01-2016
110003945696720-01-201604-02-2016
110003945985220-01-201621-01-2016
110003946502421-01-201622-01-2016
110003946906022-01-201624-02-2016
110003947808601-02-201619-02-2016
110003948215225-01-201604-02-2016
110003949546029-01-201625-02-2016
110003950481730-01-201617-02-2016
110003950995401-02-201605-02-2016
110003951033601-02-201611-02-2016
110003951125004-02-201624-03-2016
110003951340204-02-201616-02-2016
110003952172805-02-201622-02-2016
110003952664605-02-201606-02-2016
110003953618408-02-201609-02-2016
110003953669808-02-201627-02-2016
110003954411709-02-201610-02-2016
110003954822516-02-201619-02-2016
110003955050513-02-201625-02-2016
110003955183811-02-201613-02-2016
110003955624512-02-201613-02-2016
110003955827813-02-201615-02-2016
110003957360610-03-201619-03-2016
110003957795920-02-201623-02-2016
110003958369222-02-201623-02-2016
110003959109524-02-201625-02-2016
110003959343124-02-201628-02-2016
110003959755225-02-201627-02-2016
110003960514027-02-201628-02-2016
110003960600927-02-201603-04-2016
110003960877429-02-201603-03-2016
110003961664301-03-201602-03-2016
110003962643609-03-201621-03-2016
110003963175607-03-201612-03-2016
110003963259607-03-201609-03-2016
110003964102312-03-201615-03-2016
110003965929014-03-201629-03-2016
110003966365115-03-201630-03-2016
110003967698418-03-201605-04-2016
110003968266419-03-201623-03-2016
110003969947623-03-201616-04-2016
110003970181724-03-201628-03-2016
110003970396625-03-201628-03-2016
110003970428425-03-201627-03-2016
110003971235730-03-201618-05-2016
110003971380629-03-201618-04-2016
110003972448430-03-201622-04-2016
110003972459930-03-201601-04-2016
110003973150230-03-201603-04-2016
110003973623504-04-201614-05-2016
110003973868931-03-201604-04-2016
110003974297231-03-201623-04-2016
110003974396131-03-201604-04-2016
110003974507231-03-201604-04-2016
110003977686412-04-201613-04-2016
110003978212714-04-201604-05-2016
110003983525902-05-201603-05-2016
110003983741802-05-201607-05-2016
110003984796605-05-201622-07-2016
110003989043318-05-201619-05-2016
110003989103821-05-201614-06-2016
110003990503923-05-201625-05-2016
110003992107330-05-201631-05-2016
110003992772315-06-201607-07-2016
110003997095607-06-201627-06-2016
110003997224907-06-201608-06-2016
110003997628108-06-201616-06-2016
110003997967909-06-201617-06-2016
110003998810517-06-201626-06-2016
110004008672801-07-201605-07-2016
110004010342007-07-201613-07-2016
110004018248918-07-201621-07-2016
110004018980620-07-201621-07-2016
110004024009330-07-201631-07-2016
110004027958105-08-201606-08-2016
120004007220729-06-201601-07-2016
120004009381502-07-201604-07-2016
120004016268114-07-201615-07-2016
120004018107118-07-201628-07-2016
120004019043920-07-201621-07-2016
120004020998725-07-201628-07-2016
130032061539703-03-201608-03-2016
130091082335726-07-201605-08-2016
130094066788911-04-201626-04-2016
130288081427619-07-201620-07-2016
130362063148514-03-201630-03-2016
130421060136622-02-201625-03-2016
130540069221325-04-201626-04-2016
130673059160415-02-201605-03-2016
130997058282009-02-201623-02-2016
131362063746318-03-201621-03-2016
131409058556811-02-201628-02-2016
131426085618017-08-201630-08-2016
131900065615331-03-201604-04-2016
131927078440928-06-201609-07-2016
132183064024220-03-201622-03-2016
132274064747825-03-201606-04-2016
132365063165614-03-201625-03-2016
132375075425708-06-201609-06-2016
133035063752518-03-201619-04-2016
133214061179929-02-201606-04-2016
133277064052720-03-201603-04-2016
133410062579510-03-201616-04-2016
133753067197622-04-201614-05-2016
133811063174114-03-201629-03-2016
133812060854127-02-201629-02-2016
133882053380206-01-201624-02-2016
133998062556310-03-201611-03-2016
134041069225525-04-201626-04-2016
134044065350230-03-201631-03-2016
134128074849603-06-201604-06-2016
134180061153029-02-201602-03-2016
134182070462004-05-201618-05-2016
134433076673816-06-201617-06-2016
134717058701812-02-201622-02-2016
134820074420231-05-201601-06-2016
134833065448130-03-201621-04-2016
134905074536801-06-201623-06-2016
135028075558808-06-201609-06-2016
135056058553811-02-201612-02-2016
135089065198028-03-201618-04-2016
135601064146422-03-201603-04-2016
136038078406128-06-201629-06-2016
136115057531304-02-201616-02-2016
136426076262813-06-201609-07-2016
136614054539714-01-201625-01-2016
136717065447830-03-201601-04-2016
136876083748405-08-201619-08-2016
136956078851101-07-201619-07-2016
136962078734530-06-201604-07-2016
137052063331615-03-201618-03-2016
137074074552601-06-201602-06-2016
137109065189228-03-201604-04-2016
137541065180228-03-201629-03-2016
137743060725226-02-201628-02-2016
137781073684226-05-201627-05-2016
137908063429816-03-201625-04-2016
138193065332229-03-201630-03-2016
138233065475304-04-201622-04-2016
138370067483113-04-201629-04-2016
138424084474609-08-201623-08-2016
138482061153329-02-201612-03-2016
138532063601517-03-201618-03-2016
138661059276916-02-201617-02-2016
138673066178704-04-201612-04-2016
138680069944709-05-201626-05-2016
138696076711416-06-201617-06-2016
138754074381631-05-201622-06-2016
138868074869003-06-201604-06-2016
139198058709813-02-201627-02-2016
139265058057408-02-201609-02-2016
139271061303501-03-201609-03-2016
139383062911214-03-201630-03-2016
139385054251912-01-201613-01-2016
139466063467321-03-201602-04-2016
139478084609610-08-201612-08-2016
139605071681612-05-201613-05-2016
139714058364510-02-201623-02-2016
139715081579520-07-201622-07-2016
139831057690005-02-201609-02-2016
fashid
Specialist
Specialist
Author

Hi Stefan,

Thank you for your reply , i am sorry i did not mention that i wanted to do this in the scripting itself and create a table with all those application numbers.

Regards,

Nadeem

jagan
Partner - Champion III
Partner - Champion III

Hi,

Try like this

TEMP:

LOAD APPLICATION_NO_1,

     min_date_1,

     min_date_2,

     REQUIREMENT_DESC_1

FROM

TB12_20160916_204425.csv

(txt, codepage is 1252, embedded labels, delimiter is ',', msq);

Temp1:

LOAD

APPLICATION_NO_1,

Date1,

Date2

WHERE Flag = 1;

LOAD

If(Max(min_date_1) < Min(min_date_2), 1, 0) AS Flag,

APPLICATION_NO_1,

     Date(Max(min_date_1)) AS Date1,

     Date(Min(min_date_2)) AS Date2

RESIDENT TEMP

GROUP BY APPLICATION_NO_1;

fashid
Specialist
Specialist
Author

Sorry for the late response but both the solutions are excellent and worked fine for me .

wish i could mark both of them correct .

Thanks for all your help. really appreciate.