Unlock a world of possibilities! Login now and discover the exclusive benefits awaiting you.
If you have been learning about Qlik AutoML or looking for examples to get started, you might have only came across Binary Classification problems (such as Customer churn, Employee retention etc…). In this post, we will be solving a different type of problem with Qlik AutoML using a Regression model.
Regression is a type of supervised learning used to predict continuous outcomes like housing prices, sales revenue, or stock prices. In industries such as real estate, understanding the factors driving prices can guide better decision-making. For example, predicting house values based on income levels, population, and proximity to the ocean helps realtors and developers target key markets and optimize pricing strategies.
In the upcoming sections, we go through how to build and deploy a regression model using Qlik AutoML to predict house prices using the common California Housing Dataset.
Before creating the AutoML experiment, let’s define the core elements of our use case:
The California Housing dataset is split into Training (historical) housing_train.csv and Apply (new) housing_test.csv data files.
Start by uploading these files to your Qlik Cloud tenant.
(The files are attached at the end of the blog post)
Once in the Deployment screen, add the Apply dataset, create a Prediction, and make sure to select SHAP and Coordinate SHAP as files to be generated. We will use these later on in our Qlik Sense Analytics app to gain explainability insights.
Now it’s time to visualize the predictions:
Load the Predictions:
Build the Dashboard:
You can experiment with different visualization types to explore the data from multiple perspectives.
Based on the Qlik AutoML model, we can clearly see how features like income levels and ocean proximity can influence housing prices.
For more inspiration on how you can use your predictions within your Qlik Sense Apps or in your embedded use cases, check out my previous blog posts:
You must be a registered user to add a comment. If you've already registered, sign in. Otherwise, register and sign in.